新生児低酸素性・虚血性脳障害に関する実験的研究

I. 組織学的変化について

西澤嘉四郎 田中和彦 島田司巳

要旨 生後7日目の新生児ラットの片側頸動脈を結紮後、低酸素負荷（8%酸素：92%窒素）を2時間施行し、処置後3日目および4ないし8週目に脳を組織学的に検索した。処置後3日目には結紮側脳新皮質、海馬、線条体、および視床において神経細胞の変性・壊死像がそれぞれ50%，66.7%，66.7%，33.3%に認められた。大脳新皮質と海馬では小壊死域から全層性の壊死を、線条体では小壊死域から多発性壊死を、また視床では局局性壊死を認めた。処置後長期間経過したものの上記各部位に大小さまざまなグリオシスが形成されていた。障害最も高度であったものの頭動脈結紮側脳新皮質に乳児症様の組織欠損が認められた。一方、視床と線条体ではグリオシスの部位に石灰化を認めるもののが存在し、大脳新皮質や海馬と線条体の視床との間には組織所見に多少の差異が認められた。

見出し語 新生児、低酸素性・虚血性脳障害、ラット、組織学的変化

はじめに

低酸素性・虚血性脳障害は周産期脳障害の主要な原因であり、神経発達面にさまざまな後障害を遺す。従って低酸素性・虚血性脳障害の発生機序、障害組織の急性期、および中枢神経系の可塑性をも含めた、長期的な変化などを検討することは心身障害児の発生予防および療育に寄与する重要な問題である。これまでの多くの研究では、低酸素負荷もしくは虚血負荷がそれぞれ単独に行われ、個々に検討がなされて来たが、しかし、実際に未熟児、新生児の仮死と総称されるものの大部分は低酸素状態とともに血圧低下などの循環の障害を伴っている。このため、新生児仮死児による脳障害は、最近では、低酸素性・虚血性脳障害と呼ばれることが多く、その発症の要因として低酸素状態に加え、脳内血圧の変動や脳内循環不全が重要な要因であると考えられている。

実験材料および方法

本実験では側頸動脈の結紮を行い、さらに低酸素負荷を加えることにより低酸素性・虚血性脳障害を惹起し、このモデルを用いて、脳障害の組織学的変化を詳細に検討した。

一方、低酸素単独負荷群および側頸動脈切断による虚血単独負荷群を作製し、低酸素・虚血群と脳障害の差についても比較検討した。

滋賀医科大学小児科
連絡先 （520-21） 大津市鶴田月輪町
（滋賀医科大学小児科（西澤嘉四郎）
（受付日：1989. 10. 16, 受理日：1989. 12. 15）
以後は常に 8% の酸素濃度を維持することができ、
負荷後は、十分に回復したことを確認して、仔ラットを
親ラットに戻し飼育させた。

低酸素単独負荷群（Hx 群） 生後 7 日目に Hx・Ic
群と同じ条件下で手術を施行した後、同一方法にて低
酸素負荷を行った。

虚血単独負荷群（Ic 群） 生後 7 日目に Hx・Ic 群と
同一条件下で左頭動脈の結紮、切断のみを行い、低酸素
負荷は行わなかった。

上記各群について、処置後早期と長期に分け、脳の
組織学的変化を検討するため、処置後 6 時間、12 時間、
24 時間、2 日および 3 日目と 4 週および 8 週目にエー
tel 麻醉下で生食にて灌流した後、プラクスにて
灌流固定後脳を摘出し、これをパラフィン包埋したのち、
5 μm の断面後連続切片を作製した。大
脳各部位の切片をヘマトキシリン・エオジン染色およ
びニッスル染色し、神経細胞の変性、壊死および神経
細胞の構築上の変化を検索するとともに、クリー
パー・パラファイン染色にてミエリン形成の状態を観察した。

II 结 果

低酸素負荷中の仔ラットの全身状態については、
Hx 群（n=20）では全身性チアノーゼを認めたが
死亡したものは 1 例も認められなかった。これに対
し Hx-Ic 群では、低酸素負荷中、強直性けいれん
を呈し死亡した例が 55 例中 3 例に認められた、低
酸素負荷後は両群とも死亡したものは 1 例もいな
かった。また Ic 群でも術後死亡するものはなかった。

1. 脳組織の初期変化

a. 低酸素・虚血負荷群

障害が高度であった例においては、低酸素負荷後
6 時間目より大脳皮質、海馬、線状体などの一部
の神経細胞に細胞質の膨化、核の膨化とクマト
ミンの減少、あるいは核濃縮などの変化が認められるよ
うになった。時間の経過とともに神経細胞の変性壊死
はさらに進み、細胞質は好酸性を呈し、核濃縮が一
層顕著となり、部分的に核融合を示した。これら壊
死に陥った神経細胞の数および障害の範囲もまた時
間の経過とともに増加・拡大した。低酸素負荷後 2～
3 日目になると、壊死細胞は貪食細胞により郭清さ
れるとともに、星状膜細胞の出現が活発となった。
以上の結果を基に、低酸素負荷後の急性期の変化の
詳細な検索には、組織学的変化が最も広範かつ明瞭
となる低酸素負荷後 3 日目を選んだ。

Hx・Ic 群 12 匹の大脳を処置後 3 日目に観察する
と、3 例に結紮側大脳半球が浮腫状に膨脹し、肉眼
的にも明らかに変化がみられた。しかしながら、出
血などは肉眼的には認められなかった。この群の結
紮側大脳半球の顕微鏡的観察では、個々の仔ラット
により障害の程度に差が認められたが、12 例中 8
例において結紮側大脳新皮質、海馬、線条体などに
さまざまな神経細胞の変性壊死所見が認められた。
以上をまとめると障害の強さを 4 段階、(grade
0：正常、grade 1：小変死実、grade 2：多発性壊死
実、grade 3：広範圍壊死実) に分け、各部位の障
害の程度を比較検討した (表 1)。結紮側大脳新皮質、
海馬、および線条体においては、組織学的変化を認
める頻度はそれぞれ 50%、66.7%、66.7%であった。
これに対し、視床では 33.3% と他の 3 部位に比較し
て組織学の変化を認める頻度は低かった。

非結紮側の皮質、海馬や線条体、および小脳、脳
幹部等においても、散在性に少数の神経細胞の変性
壊死像が認められたが、小変死実を形成することは
なかった。

1) 大脳新皮質の変化：障害が最も高度な仔ラッ
トにおいては、大脳新皮質全層が壊死に陥り、さら
に部分的に組織の融解など、脳梗塞所見もみられた
（図 1-A1, 1-A2）。また、2 層のみが部分的に残
存するものや（図 1-A1, 1-B1, 1-B2）、脳表から
深部に向かい、壊死を免れた放射状神経細胞群と壊
死した部分とが橋接を呈するもの（図 1-B1）も
多かった。またこれらのラットでは、3 層と 5+6
層に多発性の神経細胞の壊死像（multifocal necro-
sis）が認められるものもあった（図 1-C1, 1-C2）。
最も障害が軽度な例では、3 層と 5+6 層に壊死に
陥った少数の神経細胞の集積を認めるのみであった。
この壊死実内では、神経細胞の核が濃縮
（piknosis）または debris 様となり、細胞質はエオ
ジンで鶏巣され、cresyl violet でニッスル小体の染
色不良が認められた。これらの組織学的変化は前頭
部より後頭部においてより高度であった。（表 1）

2) 海馬の変化：障害が最も高度な仔ラットにお
いては、錐体細胞層全域にわたって、神経細胞が広
範かつ高度に壊死に陥り、傷害をまねかれた神経細
胞は島状に残存しているのみであった（図 1-A1）。
障害が軽度な例では、錐体細胞の各領域に数個から
十個程度の核の debris からなる壊死群が散在する
図１ 膜質・膜質荷荷、処置後２日目の視床を示す前額断（いずれも cresyl violet 染色）
A１：重度障害例、（×10）結豊側大脑新皮質内の柱状－全層性的壞死果、海馬の多発性壊死果、白質
と内包の浮腫を認める。
A２：A１の大脑新皮質の拡大像、（×100）全層性壊死果がみられる。
B１：中等度障害例、（×10）結豊側大脑新皮質内の柱状－多発性の壊死果。放射状神経細胞層。海馬
の小壊死果および白質の浮腫を認める。
B２：B１の大脑新皮質の拡大像、（×100）放射状残存神経細胞層が明瞭である。
C１：軽度障害例、（×10）
C２：C１の大脑新皮質内の拡大像、（×100）限局性壊死果（▲）がみられる。

表１ 細胞間大脳半球における組織学的変化の分布と程度

<table>
<thead>
<tr>
<th>Grade</th>
<th>大脳新皮質</th>
<th>大脳新皮質</th>
<th>海馬(CA1)</th>
<th>海馬(CA3)</th>
<th>線条体</th>
<th>綜合判定</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4(33.33%)</td>
<td>4(33.33%)</td>
<td>5(41.67%)</td>
<td>6(50.0 %)</td>
<td>5(41.67%)</td>
<td>9(75.0 %)</td>
</tr>
<tr>
<td>1</td>
<td>5(41.67%)</td>
<td>5(41.67%)</td>
<td>4(33.33%)</td>
<td>3(25.0 %)</td>
<td>3(25.0 %)</td>
<td>2(16.37%)</td>
</tr>
<tr>
<td>2</td>
<td>3(25.0 %)</td>
<td>1(8.33 %)</td>
<td>1(8.33 %)</td>
<td>1(8.33 %)</td>
<td>4(33.33%)</td>
<td>1(8.33%)</td>
</tr>
<tr>
<td>3</td>
<td>0(0.0 %)</td>
<td>2(16.37 %)</td>
<td>2(16.37 %)</td>
<td>2(16.37 %)</td>
<td>0(0.0 %)</td>
<td>0(0.0 %)</td>
</tr>
</tbody>
</table>

0：normal
1：small focal necrosis under 10% of neurons
2：multifocal necrosis (10%~50% of neurons)
3：massive necrosis (over 50% of neurons)
のみであった。歯状核の小型ニューロンには異常は
認められなかった。海馬亜室体細胞層内では CA 1 と
CA 3 との間で障害の程度や頻度に差は認められな
かった（表 1）。
3）線条体および視床の変化：障害が最も高度な
仔ラットにおいては、線条体背側を中心に障害をま
ねがれた神経細胞と壊死核がモザイク模様をな
し、multifocal necrosis の像を呈していた（図 2-A,
2-B）。一方、障害が軽微な例においては、壊死核
は脳室周辺から外側に向かって減少していた。さら
に障害が軽微になると、壊死核は背外側に限局して
いた。また線条体では、大脳新皮質や海馬に著明な
所見が認められない場合においても、壊死核を認め
するものが 2 例あった。
視床では、全体的に障害が高度であった仔ラット
においてのみ、視床外側部を中心に focal necrosis
の像を認めた。
4）その他の部位：大脳半球の白質についてみると
12 匹中 5 匹に白質内に浮腫やグリオ細胞の壊死
像と macrophage の出現がみられた。障害が軽微な
例では、側脳室周辺の白質に浮腫性変化が限局してい
たが（図 1-C）、障害が高度になるとしたがい病変

図 2 低酸素・虚血障害群 処置後 3 日目の重度障害例
A：線条体を通る前頭断。（cresyl violet 染色×10）
B：A の線条体拡大像。（cresyl violet×40）結核側線
条体内に多発性の壊死核（1）が認められる。

図 3 低酸素・虚血障害群 処置後 8 週目の重度障害
例前頭断
A：線条体を通る前頭断。（KB×10）
B：視床中部を通る前頭断。（KB×10）大脳新皮質内
には脳室腔と連絡した孔脳室および萎縮した線条
体と視床内には線状の石灰化を伴うグリオーシ
ス（▲）がみられる。ミエリンの異常形成は認め
られない。
C：線条体の拡大像（KB×400）グリオーシス内に小
顆粒状のカルシウム沈着がみられる。
が側方に拡大し、内胞内にまで及んでいた（図1-A）。

b. 低酸素単独負荷群および虚血単独負荷群

Hx群（n＝10）およびIc群（n＝7）においては、肉眼的にはなんらの変化も認められなかった。また光学顕微鏡による組織学的検査においては、極めて少数の神経細胞の壊死像が散見されるのみで、大半のラットでは壊死果は全く認められなかった。

2. 長期変化

a. 低酸素・虚血負荷群

1) 大脳新皮質：処置後4週目および8週目のラット18匹中3匹において、結節側である左大脳半球が高度に萎縮し、小脳的に側脳室と交差する巨大な空胞を多々の組織欠損が認められた（図3-A, 3-B, 4-A, 4-B）。また、脳表では小脳回状に形成されているもみれた（図4-B）。しかし、約半数のラットでは、左側大脳半球の萎縮は軽度であり、組織学的には大脳新皮質の3層よりも上5層に小さなグリオーシスを散在性に認めるのみであった。これらの変化は、ラット脳の血管分布の上からは、中大脳動脈灌流域で限っていた。

2) 海馬：障害が高度なラットにおいては海馬全体が著明に萎縮し、細胞細胞変性では障害をも示された神経細胞が島状に残存していた（図3-B, 4-A）。一方、障害が軽微なラットでは細胞細胞層に部分的なグリオーシスを認めるのみであった。

3) 線条体および視床：線条体についてみると、障害が高度なラットにおいては、著明な萎縮とともに背外側部に石灰化を伴う大脳半球のグリオーシスを認めた（図3-A, 3-C）。しかしながら、ミエリンの退形を示す所見は認められなかった。障害が軽微なラットで同部位に軽度のグリオーシスを認めるのがみられた。

一方、視床では、障害が高度なラットの中にグリオーシスや石灰化を有する例があった（図3-B）。

4) その他の部位：白質については、障害が高度なラットにおいては白質の非膵化が認められた。しかし、障害が軽微な例では明らかな変化は認められなかった。また白質萎縮症の所見は認められなかった。

b. 低酸素単独負荷群および虚血単独負荷群

Hx群とIc群においては、肉眼的には全く異常を認められなかった。また顕微鏡的にもグリオーシスなどの所見は見出せなかった。

III 考 察

新生児低酸素性脳障害の動物モデルとして新生仔動物に低酸素負荷を加え、惹起される脳の組織学的、生化学的および病態生理学的変化を検討した報告は多数認められるが、しかしながら、これらのモデルにおいても、低酸素環境が長時間に亘ると血圧の低下などがみられ、結果的に、脳血流の変化が低酸素性脳障害の重要な要因として関与していることが示唆されている。

われわれの低酸素と虚血が重複するような状態のもとで脳障害が最も惹起されやすいと想定し、生後7日目のラットに低酸素・虚血負荷（Hx・Ic）を行うとともに、低酸素単独負荷（Hx）群および虚血単独負荷（Ic）群をも作製し、脳障害の発生率
発病生理等を比較検討してみた。その結果、Hx・Ic 群では死亡率が 4%であったが、Hx 群および Ic 群では死亡例はなく、処置後早期においても、また長期的にも Hx 群と Ic 群の脳では組織学的にほとんど変化を認めなかった。Johnston 9)は、われわれとほぼ同じ条件で仔ラットに低酸素・低血負荷を行い、37%の死亡率を認めていた。この死亡率におけるわれわれと Johnston の差は、顕微鏡的か低酸素脳負荷開始までの時間（われわれの実験では 3 時間、Johnston 9)は 1 時間）や手術を要した時間などの差によるものと考えられる。

ラットの脳の顕微鏡的病理組織の観察を、よく耐え得ること、は、幼若ラットだけでなく113)、成熟ラット10)についてもすでに報告されている。さらに成熟ラット10)、幼若家兎10)あるいは新生仔ラット10)を用い、片側顕微鏡的病理組織の観察をも、検討されているが、いずれの場合においても、結線板と非結線板で脳血流量に差が見出されていない。

低酸素単独負荷群に対しても仔ラットや仔マウス脳はよく耐え、8%酸素：92%窒素混合ガス 2 時間負荷というわれわれの条件では、脳にはほとんど組織学的変化は惹起されなかった。また、これまでにも同様な実験結果は多い153)。しかし、低酸素負荷が長時間に亘る場合には、勿論、脳皮質を中心とする高度な障害を生ずる。ところが、低酸素負荷と片側顕微鏡的病理的検査を組み合わせた場合、結線板大脳ではさまざまな部位の神経細胞が変性・壊死に陥ることが確認された。

低酸素・低血負荷群の大脳における神経細胞の障害は、結線側の大脳新皮質、海馬、線条体背側、視床外側部などで高度であり、Rice ら10)の実験結果とはほぼ同様であった。しかし、彼等の実験では低酸素負荷が 3.5 時間と長かったため、障害の程度はわれわれの結果よりも若干短かったと考えられる。

処置後 4 週および 8 週目では、大脳新皮質と海馬の線条体では神経細胞の脱落が著明で、その部位はグリコーゲン産生巨大な組織欠損に陥ったものまで、様々であった。これに対し、線条体と視床では限局性の石灰化を伴ったグリコーゲン産生が主であった。視床における石灰化を伴うグリコーゲン産生は Voorhies ら10)の報告の通りである。しかし、同一条件下にかかわらず、視床や線条体に石灰化が起こりやすい理由は明らかではない。

脳新皮質とともに、海馬も虚血により障害を蒙りやすい領域であるが、海馬の中では特に線条体層の CA 1 が最も強く障害されることが報告されてきた114)。しかし、今回われわれの低酸素・低血負荷実験では、線条体層各部位の障害の程度や範囲に差は認められなかった。しかし、Silverstein ら10)の幼若ラットを用いた低酸素・低血負荷実験でも、われわれと同様の結果が得られている。これは、未熟な海馬では線条体層各部位の構造および機能の分化が一様に不十分であるためと思われる。

ヒトにおける新生児低酸素性・虚血性脳障害で認められる病理学的変化と本モデルの組織学的変化との異同を検討すると、まず選択的虚血性神経細胞壊死（selective neuronal necrosis）は、ヒトにおいては、大脳皮質（海馬を含む）や間脳（視床、視床下部）、基底核（尾状核、被殻、淡蒔球）、脳幹、小脳（プルキンジェ細胞）などに認められている9)。今回用いたラットモデルでも、大脳新皮質、海馬、線条体、視床などが大脳動脈灌流領域の神経細胞の壊死が強く認められた。

大脳皮質の孔脳症や脳表に垂直な放射状の壊死帯もまたヒトの病理変化として認められる。Norman9)は低酸素・虚血状態に陥ると、動脈周囲の神経細胞はろうそく壊死を惹起し、動脈から遠位のものは壊死するため、放射状壊死帯と残存神経細胞の神経細胞が線条体線維をなすと述べている。

視床や線条体の status malmoratus はグリオーシスと meylinated astrocytic processes によるミエリン過形成9)により惹起されたものであるが、本モデルでは線条体や視床にメイリンク様のグリオーシスを認めが status malmoratus とと言える所見ではなかった。


Experimental Study on Pathogenesis of Neonatal Hypoxic-Ischemic Encephalopathy

I. Histopathological Study

Kashiro Nishizawa, M.D., Kazuhiko Tanaka, M.D. and Morimi Shimada, M.D.
Department of Pediatrics, Shiga University of Medical Science, Ohtsu, Shiga

This experiment was undertaken to study the effect of hypoxic and/or ischemic condition on developing brain and also to investigate the pathogenesis of hypoxic-ischemic encephalopathy.

A unilateral common carotid artery of 7-day-old Sprague-Dawlay rats was ligated and cut under ether inhalation. Three hours after the operation, these rats were exposed to hypoxia (8% oxygen and 92% nitrogen mixture) for two hours. Three days after manipulation, neuronal necrosis on the ligated hemisphere were recognized in 50% in the cortex, 66.7% in the hippocampus, 66.7% in the corpus striatum and 33.3% in the thalamus. Various sizes and degrees of necrotic regions were found in the cerebral cortex. In some cases, cuffs of radially arranged viable neurons alternating with stripes of full-depth necrosis of the cortex were noticed. In the hippocampus, neuronal necrosis was found segmentally at the pyramidal cell layer. In the corpus striatum and the thalamus, the damage consisted of small focal or multifocal neuronal necrosis. After four and eight weeks of the manipulation, a large porencephalic cavity in the cerebral cortex of the ligated side was noticed as the severest manifestation in 16% of the cases. In some cases, multiple lobulation similar to polymicrogyrus was noticed. Various sizes of gliosis were also numerous in the cerebral cortex, hippocampus, corpus striatum and thalamus of the ligated side hemisphere. Calcified lesions were also occasional in the basal ganglia.