時間の分子生物学—概日周期と睡眠の時計遺伝子による制御

条 和 彦

要旨 概日周期生物時計は、植物から動物に至るまで普遍的に存在する。近年、その時計遺伝子が次々と単離され、生物時計の発振機構が、分子生物学レベルではほど解明された。その結果、時計遺伝子の転写量がネガティブフィードバックループで制御されるという機構が、全ての生物で保存され、哺乳類と昆虫の間で、時計遺伝子の核酸レベルでの相似性も発見された。一方、概日周期は、人間の睡眠覚醒リズムを制御するが、睡眠に似た行動は昆虫でも認められ、その制御において、哺乳類と同じドーパミンが使われることが判明し、分子機構の解明が期待されている。本稿では、生物時計の基礎、睡眠との関係、分子生物学、臨床的意義について概観する。

見出し語 概日周期、生物時計、サーカディアンリズム、睡眠、覚醒

は じ め に

1日約24時間周期の生物時計は、睡眠リズムを制御し、夜型・朝型の生活リズムを決め、時差ぼけの原因になるなど、臨床医療上も日常生活にも重要である。地球上のほぼ全ての生物に、概日周期生物時計が働いているが、近年、その分子レベルでの制御機構が次々に解明され、多くの知見が集積されてきた。人間の場合、脳の視床下部視交叉上核が、その中枢だが、分子生物学的には、ショウジョウバエで最初に発見されたビリオドという遺伝子を中心に、24時間周期が作られる。本稿では、概日周期について、その基礎から臨床、分子生物学を兼ねた発振機構、さらに、時計遺伝子の変異による臨床的な意義について、最新の知見を紹介する。

I 概日周期生物時計の基礎

最初に、生物リズム、生活リズム、概日周期、生物時計、体内時計など、さまざまな単語が使われるので、その定義を確認する。

「リズム＝音楽のテンポ、律動、律動的な動き、調子、周期的な変動」であり、「生物リズム」とは、生物周期で繰り返される行動や生物現象をあらわす。さまざまな、周期があり、周期の長さによっても分類される、サーカディアン・リズム

は、約1日単位のリズムを表す英語で、ラテン語で、サーカディアンリズムが、「約」「だいたい」という意味で、ディアディメンスはディアディメンスイズの語源で「1日」を表す。その日本語訳が、「概日周期」で、概、概数の前の概、概日＝約1日とする。

この24時間周期が、最も身近で解析的に進めているため、これに基準に、24時間より短いリズムをウルトラディアディメンスイズ、逆に長いリズムをインフラディアディメンスイズとも呼ぶ、短い方では、数時間、数分、数秒、数ミリ秒単位、長い方では、数日単位、月単位、季節単位、年単位、さらに、奇数窓がの発生などで知られるような数年の単位などの、さまざまなリズムが知られている。

次に「生物時計」と言う音楽は、生物が持つ時間を測る仕組みを指すが、その中で、日常生活に最も密接に関係するのが、概日周期、つまり約24時間を刻む生物時計である。この「概日周期生物時計」は、動物だけではなく、植物や単細胞生物にも存在することが、特に人間の場合にとっては要因として、「体性時計」という言葉も、通常には使用されているし、より具体的に「脳内時計」という言葉も使われる。

以上のように、概日周期、生物時計、体内時計は、実は、ほぼ同じ意味で用いられることが多い。

「概日周期生物時計」は、ほぼ全ての生物に存在することが、その成立する条件は、以下の4つとする。第一に、自立して動くこと、つまり、外部の環境や行動が時計を進めるのではなく、外部環境が完全に一定の条件であっても、自動的に時間を刻み続けることができる。第二の条件は、外部から激しい影響ができること。体内の時計が、外部の本当の時刻とずれて、遅れたり進んだりした。考えられないといけない。この調節、リセットと呼ばれる、外部環境の変化を受け取るリセットできる仕組みを持つ。第三の条件は、時計が1周期の周期が約24時間であること。第四の条件は、温度変化性で、環境で体温が

熊本大学生間医学研究センター再建医学部門幹細胞制御分野

(受付日：2005. 11. 24)
変わっても、周期があまり変わらない仕組みだ。哺乳類・鳥類など、体温がほぼ一定の恒温動物では重要ではないが、変温動物や植物では、重要な条件となる。

実例として、図1にマウスの活動リズムの例を示す。全体で14日間分のマウスの行動記録を、各段に2日分ずつのデータを並べたダブル・プロットと呼ばれるグラフで表す。最初の段には、1日目と2日目のデータを、4段目には、2日目と3日目を並べて、前後関係をよくわかるようにしてある。最初の7日間は、1日のうち12時間ずつ明るくして、人工的な昼夜の明暗サイクルを作り（明暗条件）。その後は、1日中、完全に暗くなる（恒常暗条件）、灰色の部分が、電気を消している時間を示す。マウスは夜行性なので、最初の7日間は、暗くなると活動を始め、明くなる前に、活動を休止する。しかし、電気をずっと消して1日中真っ暗にした翌日も、この暗くなる時間に、やはり活動を始める。この活動の開始時刻が、直前の日活動の開始時刻と、ほぼ同じことから、このマウスの生物時計による数日間リズムが、外部の明暗周期に調節していたことがうかがえる。2番目の条件に満たない。特に、翌日、未日とずっと暗くしていても、やはり同じような時間に、活動を始めるので、1日目の自立して動くという条件も満たす。翌日以後、起きる時間が、少しずつずれていくので、このずれをもとにその周期を計算すると、左側のマウスBは、外からの変動がないと、1日を、約22.5時間として過ごしている。右側のマウスAは、左側のマウスより、早く起きてしまい、1日を約22.5時間として過ごす。これで、3番目の条件、約24時間という条件にも満たす。なお、このように、外部の環境を完全に一定とした状態で、その個体が持つ生物時計による数日間リズムに従うようにした時の周期の長さを、生物時計が外部環境の影響なし、自由に動いているという意味でフレーラン周期と呼ぶ。

概日周期生物時計は、動物・植物に加えて、核という構造を持つない原核生物の真性細胞にも存在することがわかった。特に、シアノバクテリアイという単細胞生物では、細胞周期が数時間と、1日より短いが、概日周期を持つので、細胞分裂を超えて、時刻の情報がひきつれられることがわかった。また、動物などの生物一般が、概日周期を持つ意義については、1日の内の時刻を知る、1年の中の季節を知る、時刻と太陽などの方向から方向を知る、の3つの意義があるとされる。

概日周期生物時計は、外部から調節可能だが、最も強い調節作用を持つのは、光である。しかし、光の作用は双方向性で、明け方から午前の時間帯に光が当たると、生物時計は進行し、逆に、夕方から、夜の早い時間帯には、光は時計を遅らせる。

II 概日周期（体内時計）と睡眠の関係

睡眠の量は、睡眠の量で制御されている。その睡眠の量を制御する要素には、さまざまなものがあるが、睡眠そのものがホメオスタシス制御と、概日周期の二つが特に重要である。前述に関しては、たとえば、前日、長く眠ると、翌日は1日中眠気が弱く、夜も早く眠りはなさらない、ところが、前日、睡眠時間が短ければ、次の日は、1日中眠気が強まる。このように、眠気、それがまたの覚醒時間（つまり睡眠の不足）に比例して増える機構により、一定量の睡眠を確保できるようなホメオスタシス制御がなされている。この睡眠不足を、睡眠負債（sleep debt）と呼ぶ。

これに対して、後者の概日周期は、1日の中の昼の時間帯に眠気を覚ますような覚醒信号を送り出しているとされており、前日までの睡眠負債の量にかかわらず、1日の時間に応じて達する睡眠の成分であるとされる。これを、数学的モ
図2 二過程モデル

黑線が、睡眠負荷による脈拍の変動を、灰色線が、極短期間からの覚醒信号を示す。この両者の差（図示された部分）が、実際のその時点での脈拍の振幅を表す。

加えて、12時間周期の脈拍も提示されている。

また、極短期間でリズムが作られるのは、脈拍だけではなく、体温や種々のホルモンの分泌、代謝や心臓器の機能などに、極短期間リズムがある。そのため、たとえば、降圧剤を飲むタイミングや、抗発症剤による治療に最適な時間帯があることも示されており、時間治療の分野も発展しつつある。

Ⅲ 睡眠周期の生物時計の中枢

個体レベルで観察される睡眠周期が、どこにあるように作られているかは、最初に、生理学的な研究から明らかにされた。まず、その中枢は、視床下部にある視交叉上核（suprachiasmatic nucleus 以下、SCN）であることがハムスターを用いた破壊実験で証明された。SCN は、視床下部に左右対称あり、直径が 1 mm 程度、一方程度の神経細胞を含む小さな神経核だが、in vivo および、取り出した SCN を用いた電気生理学的な実験から、SCN が全体として、24 時間周期のリズムを発揮していることが分かった。さらに 1984 年には、SCN の神経細胞を個々に分離し、in vitro で培養を続け、その電気活動の記録を続けると、何週間もわたって、その活動の強さが、24 時間周期で増減することが改まった。つまり哺乳類の概周期は、SCN の個々の神経細胞が 24 時間周期が基本となり、それが、束縛に SCN という神経核レベルの時計を作り出し、その時計が基盤となって、全身のリズムを制御している（図4）。これらの結果から、個々の神経細胞レベルで 24 時間周期を作る仕組みが、全身のリズムも作っていると考えられる。

Ⅳ 睡眠周期生物時計の分子機構

細胞レベルで、どのような仕組みで 24 時間周期が刻まれるかは、またにも、ショウジョウバエの変異研究から解明が始まった。詳細な説明は省くが、表1に、動物の睡眠周期研究の歴史を示す。1971年に、行動の遺伝子変異の最初の例として、ショウジョウバエのピリオド変異株の単離が報告された。これにケロニングされたのは 1984 年だが、機能が完全に解明されるのはさらに 10 年以上の時間を要した。

—7—
図 1 動物の概要の変動過程

表 1 動物の概要の変動過程の進歩

<table>
<thead>
<tr>
<th>年代</th>
<th>事実</th>
<th>状況</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>ショウジョウパオノ節周期性発現（ビリオド）の証明</td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>ショウジョウパオノ節周期性発現（ビリオド）の証明</td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>ハムスター・タマ玉発見</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>マウス・クロオル変異型</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>ショウジョウパオノ・タイムレス遺伝子変異型</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>マウス・クロオル変異型</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>マウス・タイムレス遺伝子変異型</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>クリプトクローム・ノックアウトマウス発見</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>ハムスター・タマ玉変異型</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>家族性有能型変異型</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>化学的遺伝子発現解析による、生物時計時期（時相）決定法の発見</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>家族性有能型変異型</td>
<td></td>
</tr>
</tbody>
</table>

一方、哺乳類では、1994年に変異が報告されたclockが、1997年にはクローニングされ、同じ年にクローニングされたperiod遺伝子とともに、概要周辺発現機構の栄養が挙げられ、1999年には、われわれが報告したクリプトクローム遺伝子の発見などで、哺乳類・昆虫とともに、概要周期発現の分子機構が、ばら々解明された。

その結果、哺乳類・昆虫などの動物でも植物でも、これまで調べられた全ての生物で、概要周期を刻む生物時計では、振り子にあたるものは、遺伝子変異である遺伝子の量で、そのの転写量は、概要周期で変動させているのは、ごく簡便な転写のゲジティブフィードバックの仕組みだった。

図 1 に示すように、ある遺伝子 X が、自分自身の転写を抑制すると、周期的な変化を作ることができる。順を追って説明すれば、

(1) 初期態勢（基準 = 0 時とする）では、この遺伝子 X のmRNA が、遺伝子も、どちらもない、細胞の核の中で、X のmRNA の転写が始まり、mRNA が作られて増えている。

(2) 作られたmRNA は核外に運ばれ、リポソームで、X 蛋白質が作られる。蛋白質が増え始めるのは、mRNA より、少し遅れる。

(3) さらに時間が経つと、X のmRNA の量はさらに増えるが、X 蛋白質の量も増え、一部は核の中に入り、mRNA の転写の抑制を始める。しかし、作られたmRNA は、まだ細胞質に残っているので、これを元に、X 蛋白質の合成は続く。その後、X 蛋白質が核の中に増え、X のmRNA の転写は完全に抑制されて、新たな X のmRNA は作られなくなる。この時点で、mRNA の量は最大値となる。

(4) mRNA が、一定の寿命があるので、細胞質のmRNA がだんだん減り始める。しかし、mRNA が残っている限り、蛋白質の翻訳は継続するため、X 蛋白質は、さらに増え続ける。

(5) 最終的に、mRNA がなくなると、X 蛋白質の合成も完全に止まり、X 蛋白質の量は最大値に到達する。

(6) X 蛋白質にも寿命があるため、合成停止後は、量が減
図5 転写のフィードバックモデル
転写のフィードバックが、24時間周期を作り出し、それが、ほとんどの動植物の細胞周期発振動制の基盤となっている。この場合、遺伝子Xの転写量が、自身の転写を抑制するという性質を持つと、周期的な増減を作り出すことができる。

（7）最後に、X遺伝子が完全になくなると、初期状態に戻り、再びサイクルが始まる。このサイクルに24時間程度必要とされ、24時間周期を作り出すことができる。

なお、最も研究により、原核生物であるリアクタリリアでは、転写のネガティブフィードバック以外にも、蛋白質のリン酸化・脱リン酸化のみで来す24時間リズム発振機構があることが示られているが、それが哺乳類などにもあたるか、まだわからていない。

Ⅴ 概日周期生物時計の臨床応用
ゲノムスケールの多数の遺伝子の発現変化を調べることができるジーンチップ技術の進展により、概日周期に関しても、新規のシステムバイオロジー的な手法で研究が進んできた。従来、ある遺伝子の発現量を24時間以上の時間にわたって調べ、その増減周期により、個体の生物時計の位相を決定する方法が一般的であった。しかし、この方法は、臨床的に難しい、概日周期に関じた発現変動ををして、さまざまな位相をとる、多数の遺伝子の発現量の包括的な解析をすれば、一点のデータだけからでも、かなり正確に位相を決定できる可能性が、理研の上田らにより示されている。

また、人間の概日周期は、外部環境から切り離された条件での生活実験などから、フリーラン周期は25時間程度とされているが、睡眠や光の影響を完全に除いた条件下では、ほぼ24時間程度になる。そのフリーラン周期が30分程度でも変化すると、生活時間帯を与える影響は、光の影響を受けて、より大きくなるため、数時間単位の最終相の前進や後退という症状を引き起こす。睡眠相位の変動は、夜型化の進行する先進国では、共通の問題となっているし、逆に、睡眠相位延長症候群でも、睡眠時起、起床時刻が、通常よりも、どんどん遅くなってしまい、社会生活に支障をきたす。また、調整（リセット）能力の異常でも、非24時間型睡眠覚醒障害が起る可能性も示唆されている。

米国では、以前から、睡眠相前進症候群がいくつかの家系で集積して発生しているため、遺伝的な原因が予測されてきたが、2001年に、ヒトのPer2遺伝子のリン酸化部位の変異が、家族性睡眠相前進症候群を引き起こす原因に溶っているという報告がされた。また、2005年には、そのリン酸化部位をリン酸化するカゼインキナーゼIαの変異もあり、同様に、家族性睡眠相前進症候群を引き起こしていることが示された。日本においても、未解決の精神的な研究により、いくつかの遺伝子多型と、疾患との関係が示されつつある。

Ⅵ 昆虫の睡眠覚醒制御
最後に、概日周期生物時計の遺伝子研究の要因となったショウジョウバエにも、睡眠に似た行動があることが2000年に示された。最近、我々のグループの研究により、ショウ
Molecular Biology of Biological Clock
—— Genetic Regulation of Circadian Rhythm and Sleep

Kazuhiko Kume, MD

Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto

Circadian rhythm is a universal biological property functioning in most living species on the earth from bacteria and plants to animals. The molecular mechanisms creating this rhythm have recently been elucidated and the transcriptional feedback loop regulation of "clock genes" is regarded as essential for all species studied so far. Both mammals and insects share the similar clock genes, which highlights the long conservation of circadian rhythm at the genetic level.

Sleep and arousal cycles in mammals are known to be regulated by both homeostatic and circadian processes, but the genetic machinery for sleep regulation is still unclear. Recently, it has been reported that insects also have sleep-like behavior, and we showed that insects use dopamine as a regulator of their sleep/arousal cycling, which strongly suggests the similarity of arousal regulation between insects and mammals at the molecular level.

In this review, these recent advancements of the molecular understanding of circadian rhythm and sleep/arousal regulation are outlined.