横幹連合コンファレンス予稿集
第8回横幹連合コンファレンス
セッションID: E-2
会議情報

E-2  ICTメディカル・ヘルスケア
レベル集合制約を用いた圧縮センシングMRI
*柴田 基北原 大地平林 晃
著者情報
会議録・要旨集 オープンアクセス

詳細
抄録
CS-MRI is a high-speed magnetic resonance imaging technique based on compressed sensing theory. It is known that the utilization of dictionary learning (DL) for CS-MRI leads to better image reconstruction results. In the optimization problem adopted by the DL-based CS-MRI, we must appropriately adjust the weights of data fidelity term and dictionary fidelity term, respectively, for each MR image. In this paper, we formulate a novel optimization problem where the above two fidelities are expressed as level set constraints, and solve this optimization problem by using alternating direction method of multipliers (ADMM). Numerical experiments show that the proposed method can reconstruct several MR images with high accuracy by using the same parameters.
著者関連情報
© 2017 (NPO)横断型基幹科学技術研究団体連合(横幹連合)
前の記事 次の記事
feedback
Top