Comparison of life cycles and morphology of Cyanea nozakii and other scyphozoans

JING DONG1*, MING SUN1, BIN WANG1 & HAIYING LIU2

1 Liaoning Ocean and Fisheries Science Research Institute, Liaoning Open Laboratory of Applied Marine Biotechnology, Dalian 116023, China
2 School of Marine Engineering, Dalian Fisheries University, Dalian 116023, China

Received 1 May 2007; Accepted 26 February 2008

Abstract: Mass aggregations of the giant jellyfish Cyanea nozakii have occurred in China since the end of the 20th century. In particular, C. nozakii bloomed abnormally in Liaodong Bay during July and August of 2004 and the catch of edible Rhopilema esculentum was greatly reduced. In order to clarify the causes leading to mass occurrences of C. nozakii, the reproductive cycle and morphological characters of this species were compared with other common jellyfish species using data from both laboratory–rearing experiments and field investigations. The results showed that, in particular, settling of planulae and asexual reproductive strategies of scyphostomae made C. nozakii more capable of thriving under unfavorable physical conditions than R. esculentum. The ephyrae of Nemopilema nomurai, R. esculentum, C. nozakii, Aurelia aurita, Rhopilema hispidum and Rhopilema asamushi were differentiated by different shapes of lappets, rhopalar clefts, gastric filaments and nematocyst batteries. In addition, the life cycle of C. nozakii was compared with earlier reports on the life cycle of Cyanea capillata, R. esculentum, Rhizostoma pulmo, Stomolophus meleagris and N. nomurai, and the morphology of adult C. nozakii was compared and contrasted with species of the genus Cyanea (C. capillata, C. ferruginea and C. purpurea).

Key words: Cyanea nozakii, life cycles, morphological characters, scyphozoans

Introduction

Since the end of the 20th century, giant jellyfish have bloomed in the northeastern parts of the East China Sea, the Yellow Sea and the Bohai Sea. Such jellyfish blooms also occurred in Japan and Korea in 2003, and have caused damage and loss of fishing nets during the fishing season in all of the above waters. The giant jellyfish that bloomed along the coastal areas of Japan and Korea in 2003 was Nemopilema nomurai Kishinouye (Kawahara et al. 2006), but surveys suggested that different giant jellyfish may be blooming in Chinese waters. In addition to N. nomurai, Cyanea nozakii Kishinouye also bloomed (Chen et al. 2005). Cyanea nozakii in particular has caused ecological disasters (Chen et al. 2005). The giant jellyfish C. nozakii used to appear only sporadically in the past, but it is now widely distributed, abundant in quantity, and can spread over large areas within a short time. When blooming, it occurs in such large numbers that it can damage or break nets due to there being too many of them in a net, and it has become trouble during the fishing season in the East China Sea, Yellow Sea and Bohai Sea. The harm to marine ecosystems caused by jellyfish blooms has exceeded that caused by red-tides in the coastal waters of China in recent years.

In the past, two other Cyanea species, Cyanea capillata Linneus (Haaheta & Lassig 1967, Dolmer & Svane 1993) and Cyanea lamarekii Pérón & Lesueur (Gröndahl 1988, Brewer 1976, 1984, 1989, 1991) have mainly been studied. Morphological descriptions of the medusa of C. nozakii have been carried out with the aim of distinguishing species based on external structure (Uchida 1936, Hong 2004). Lu et al. (2003) studied the fisheries biology of C. nozakii in the waters of Dongshan Island. Zhong et al. (2004) investigated how environmental factors increased susceptibility to C. nozakii blooming. Ge (2005) reported that the catch of the edible jellyfish Rhopilema esculentum Kishinouye declined suddenly in Liaodong Bay in July 2004 due to the blooming of the jellyfish C. nozakii. The species of jellyfish blooming in Liaodong Bay, China, in July 2004 was identified as C. nozakii by Dong et al. (2005).

In order to clarify the causes of mass occurrences of C.
nozakii, it is necessary to understand its reproduction and correctly characterize its morphology. Until now little attention has been paid to comparisons of the reproductive biological traits of bloom-forming species. In our laboratory, a large number of scyphistomae and ephyrae of C. nozakii were obtained under culture conditions for the first time in history and early developmental studies were carried out and reported (Dong et al. 2006a and b). In this paper, we report on mass occurrences of medusae in Chinese waters, in particular in Liaodong Bay. We also compare the morphological characteristics at different developmental stages and asexual reproductive strategies of C. nozakii and other species. The main aim of this research was to increase knowledge on the morphology of young stages of C. nozakii in the field in order to forecast its blooming.

Materials and Methods

Five quantitative surveys were conducted on fishing vessels of the Yingkou Fishery Company between May and October every year from 2004 to 2006. Cyanea nozakii was collected by drift nets and hand nets at 18 stations in Liaodong Bay of Bohai, China (Fig. 1). Medusae were counted and their umbrella diameters were measured. Samples for measurement of environmental parameters (such as surface water temperature, salinity, DO, crude oil, heavy metals, phytoplankton and pesticides etc.) were collected.

Table 1. Number of Rhopilema esculentum and Cyanea nozakii from June 20 to July 24, 2004.

<table>
<thead>
<tr>
<th>Date</th>
<th>R. esculentum</th>
<th>C. nozakii</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 June 2004</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td>15 July 2004</td>
<td>104</td>
<td>870</td>
</tr>
<tr>
<td>24 July 2004</td>
<td>1</td>
<td>1250</td>
</tr>
</tbody>
</table>

Table 2. Environmental physicochemical parameters in different stations on July 24, 2004.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Stn No.</th>
<th>Water Quality Standard for Fisheries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>26.4</td>
<td>26.8</td>
</tr>
<tr>
<td>Salinity</td>
<td>34.12</td>
<td>33.64</td>
</tr>
<tr>
<td>Diaphaneity</td>
<td>1.6</td>
<td>0.9</td>
</tr>
<tr>
<td>pH</td>
<td>8.22</td>
<td>8.28</td>
</tr>
<tr>
<td>DO (mg/L)</td>
<td>6.01</td>
<td>7.86</td>
</tr>
<tr>
<td>Crude oil (mg/L)</td>
<td>0.381</td>
<td>0.387</td>
</tr>
<tr>
<td>Cu²⁺ (µg/L)</td>
<td>3.66</td>
<td>4.15</td>
</tr>
<tr>
<td>DDT (µg/L)</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Mature medusae collected from Stns 17 and 18 by hand net on September 10, 2004, were cultured in a concrete tank (volume: 15 m³) at Huludao Breeding Center. Spawning and fertilization were achieved by holding 12 (umbrella diameter=200–360 mm) mature medusae (♀ : ♂ = 1 : 1) in a 1 m³ aquarium. Planulae appeared 14 hours after fertilization at 20.8–21.4°C and settlement, metamorphosis and scyphistoma formation were observed. Young scyphistomae were fed with trochoophores of shellfish (Crassostrea gigas Thunberg) and blastulae of sea urchins (Hemicentrotus pulchermiss Agassiz) twice or three times a week. Fully-developed scyphistomae were fed with Artemia nauplii once or twice a week. Ephyrae and young medusae were fed with Artemia nauplii and gelatinous prey (e.g., ephyrae of Rhopilema esculentum, Aurelia aurita Linneus) once or twice daily. Asexual reproduction, and morphology at different developmental stages were observed under an Olympus AX80TR-62E01 microscope with Canon camera.

Results

Mass occurrence and environmental factors

On June 20, 2004, the dominant species at Stns 17 and 18 was Rhopilema esculentum, as young medusae. However, on July 15 and July 24, 2004, the relative numbers of Rhopilema esculentum dropped rapidly while the numbers of Cyanea nozakii increased dramatically. On July 24, 2004, the number of C. nozakii was over 1000 times more than that of R. esculentum. The data is shown in Table 1.

On July 24, 2004, samples for measurement of environ-
mental physicochemical parameters and analysis of phytoplankton were collected. The results are shown in Table 2. Salinity was 1.6 times higher than the mean value for salinity in past years in the same season, and the average concentration of crude oil in the surface water was 6.6 times as high as the allowable level according to the Water Quality Standard for Fisheries (GB11607-1989). Dead *Nitzschia pungens* Grunow occurred in large surface slicks in the areas where *C. nozakii* was blooming.

Spawning

Fully developed oocytes of *C. nozakii* were released into open seawater. Fertilization and embryogenesis of *C. nozakii* occurred in open seawater too. Cleavage of the zygote was total and equal. A hollow blastula was formed 10 hours after fertilization at 20.8–21.4°C. Gastrulation occurs by invagination. Fourteen hours after fertilization, actively swimming planulae appeared.

Planulae and settlement

Planulae varied in outline from slipper-shaped to irregularly oval. Their lengths ranged from 90–180 μm and widths from 60–95 μm. They swim actively by means of cilia, and rotated counter-clockwise around their longer axis. Living planulae were milky in color with a ciliated ectoderm. Prior to settlement, the anterior-posterior axis shortened, swimming became slow, and they became encysted planulocysts. The planulocyst developed an elongated stalk and became flask-shaped in outline, they then gradually became newly metamorphosed scyphistomae (Fig. 2).

We found that the planulae of *C. nozakii* swam freely in the water for only 1.5 days at 21°C and settled quickly. In contrast, the planulae of *R. esculentum* metamorphosed into scyphistomae either at the settlement stage or already during the pelagic stage, where they could swim freely in the water for 5 days at 18–22°C (Ding & Chen 1981).

Scyphistomae

The color of newly-born scyphistomae was milky, and they varied between 90–200 μm in height from the pedal disk to the mouth, with the tentacles being 100–150 μm long. The four short tentacles were filiform with scattered nematocyst batteries and the slender stalk was sheathed in a thin cuticle. The color of young scyphistomae was also milky. The young scyphistomae were 170–400 μm high and bore eight contractile tentacles, which were 400–1200 μm long, filiform with scattered nematocyst batteries, and occurred in one whorl. The color of fully-developed scyphistomae was whitish, becoming light orange after feeding on *Artemia* nauplii. The scyphistomae attained 400–2000 μm in height. The 16 or more tentacles were contractile, in one whorl, 1000–3200 μm long, and had scattered nematocyst batteries.

Strobilae

The earliest strobilation occurred within 2 months after settlement when scyphistomae were kept at 22–26°C. Stro-
bilation was typically monodiscous in *C. nozakii* (Fig. 4A). Expansion at the base of future rhopalar tentacles occurred first. A clear external indication of strobilation was the development of a small marginal lobe at the base of each rhopalar tentacle. Segmentation began as a faint circular incision proximal to the tentacular ring. This incision gradually became deeper and more distinct. After about 1.5–2.0 days the eight rhopalar tentacles began to undergo regression and were finally resorbed. At the same time, rhopalia with statoliths became apparent, lappets elongated, and incisions constricting the segments deepened.

Ephyrae

Newly released ephyra (Fig. 4B) were 2–3 mm wide from lappet-tip to lappet-tip when extended. They typically had 16 blunt-shaped lappets, 8 marginal lobes and 8 rhopalia. Rhopalar clefs were U-shaped and about half the depth of the large ocular clefs separating the marginal lobes. The exumbrella was marked by numerous scattered nematocyst batteries. The manubrium was large and quadrangular, with four lips often present at the mouth. The stomach portion of the gastrovascular cavity was nearly circular, and 1 gastric filament was present in each quadrant. The radial muscles were visible, extending into each lappet from the marginal lobes (Fig. 4B).

Medusae

Adult medusae of *C. nozakii* are about 200–300 mm, in diameter with a maximum size of over 500 mm. The middle of the smooth exumbrella is marked by numerous scattered nematocyst batteries. They have 8 marginal lobes, 8 rhopalia, a strong oral canalis carpi, and many long tentacles. The length of the oral canalis carpi is longer than the diameter of the umbrella, and the roots were combined together. The most striking feature is perhaps that *C. nozakii* has many long tentacles (about 1–2 m), 8 groups of tentacles were in a U-type arrangement on the umbrella. *C. nozakii* is dioecious with four stacks of gonads hid in the 4 subgenital pits.

Discussion

Mass occurrence of *Cyanea nozakii* and salinity

In the present investigation, the salinity in those areas where jellyfish blooming occurred was 33 to 35. Under experimental conditions, the author found that the salinity survival range was 12–35 for scyphistoma of *Cyanea nozakii*, with the salinity suitable for growth being 15–32, while optimal salinity was 20–30. However, the salinity survival range was 15–35 for ephyrae, and the most suitable salinity for growth was 20–35. Lu et al. (1989) reported the lowest salinity for scyphistoma survival *Rhopilema esculentum* to be 10, and the most suitable salinity for growth was 14–20. Chen et al. (2005) found that *C. nozakii* preferred warm, high salinity environments with a suitable surface salinity range being 28–32 with a bottom salinity range of 32–34.

According to the above study, the following characters may be recognized: (1) Adults of *C. nozakii* prefer high salinity environments and mainly occur in high-salinity areas; (2) Origin of larvae of *R. esculentum* lies in estuaries with lower salinity and abundant food. *Rhopilema esculentum* inhabits coastal sea waters during its entire life cycle.

Asexual reproduction

Some aspects of asexual reproduction specific to scyphistomae of *C. nozakii* can be compared with those of *R. esculentum*. Scyphistomae of *C. nozakii* could produce podocysts and tendrils and develop new scyphistomae. Tendrils attached to new attachment points near the base of the scyphistoma, and then formed a cyst. Meanwhile, the parent scyphistoma retained the original pedal disk. Scyphistomae of *R. esculentum* only produced one kind of cysts: podocysts (Fig. 3C). When a podocyst formed, parent scyphistomae migrated to new attachment points and left behind the podocysts, which remained on the original substrate sites (Ding & Chen 1981).

Morphological distinction of ephyrae

The main aim of the morphological study of the ephyrae was to offer taxonomic evidence helpful in forecasting jellyfish blooms. Based on the different morphology of the ephyral lappets, 2 groups of ephyrae can be recognized: the first group (such as *R. esculentum, Rhopilema asamushi* Uchida and *Nemopilema nomurai*) has ungula-shaped lappets, while the second (such as *C. nozakii*) has almost blunt lappets. There is also another kind of lappet in *Rhopilema hispidum* VanhOffen, and * Aurelia aurita*, which are sharp-angled, but do not have branched tips. This means that the ephyrae of *N. nomurai* and *R. asamushi*, which often co-occur in Japanese coastal waters, can not be morphologically distinguished based only on the morphology of the lappets. However, we also found that the lobes of *N. nomurai* have 3–4 branched tips while the lobes of *R. asamushi* have 4–6 shorter branched tips. A similar situation occurs
between *R. esculentum* and *N. nomurai*, which usually co-occur in Chinese coastal waters. According to our observations, the ephyrae of *N. nomurai* and *R. asamushi* can not be differentiated by the number and length of branched tips in the ephyrae (Table 3).

Rhothilema esculentum and *N. nomurai* differ in the shape of the gastric cavity, and in the arrangement of the nematocyst batteries. In *R. esculentum*, they are aggregated into 8 spots of nematocyst batteries, but they are unconspicuous in *N. nomurai*.

Life cycle comparison

The life cycle of *C. nozakii* was compared with earlier descriptions of the life cycles of *C. capillata* (Widersten 1968, Brewer 1976, 1984, 1989, 1991), *R. esculentum* (Ding & Chen 1981), *Rhizostoma pulmo* Agass (Paspaleff 1938, Russell 1970) and *Stomolophus meleagris* L. Agassiz (Calder 1982). Kawahara et al. (2006) described the life cycle of *N. nomurai*. The comparison is shown in Table 4. According to our observations, because the embryogenesis from a fertilized egg, and cleavage of the zygote to a blastula and planula in open sea water, the situation in *C. nozakii* is like in *R. esculentum* (Ding & Chen 1981). Planulae of *C. nozakii* could form planulocysts prior to forming a scyphistoma, *C. nozakii* also could produce podocysts and a stolon, which could also be involved in the formation of new cysts and development of new polyps. Widersten (1965) showed that planulae of *C. capillata* could also form planulocysts prior to forming a scyphistoma, and that scyphistomae could produce podocysts. However, *R. esculentum* (Ding & Chen 1981), *S. meleagris* (Calder 1982), and *N. nomurai* (Kawahara et al. 2006) only produced one kind of cysts: podocysts. The numbers of ephyrae released from a strobila varied among species, Dale (1982), Ding & Chen (1981), and Kawahara et al. (2006) found that *S. meleagris*, *R. esculentum* and *N. nomurai* all were polydiscous. Strobilation in semaeostomes such as *C. capillata* and *A. aurita* were usually of the polydisk type (Brewer 1976, 1984, 1989, 1991), but in the semaeostome *C. nozakii* was typically monodiscous.

Key to species of the genus Cyanea

Four species of the genus *Cyanea* have been reported from Chinese waters. They are *C. nozakii*, *C. capillata*, *C. ferruginea* Eschscholtz and *C. purpurea* Kishinouye (Hong 2002), These species all share the common characteristics of 8 marginal lobes, 8 rhopalia, strong oral canalis carpi,
and a lot of long tentacles. *Cyanea nozakii* can be distinguished from *C. capillata*, *C. ferruginea* and *C. purpurea* (Table 5) by the characters of tentacular pouches being connected with gastric pouches on the fringe of the umbrella by transverse tubes, and that the peripheral canals have numerous anastomoses.

Acknowledgments

This research was funded by a grant from a collaboration program (No. NRIFS 8171-46-1) and the Japan Society for the Promotion of Science (JSPS) (No. S-05251). We are grateful to Dr. Hitoshi Iizumi of the Japan Sea National Fisheries Research Institute of the Fisheries Research Agency for his effective contribution to the exchange of information between jellyfish researchers in Japan, Korea and China. I also give thanks to Dr. Masaya Toyokawa of the National Research Institute of Fisheries Science who supplied excellent facilities for photography, and to Mr. Kazuya Okuizumi of Kamo Aquarium in Tsuruoka-city, who supplied excellent information for collaborative research about the growth of ephyra larvae of *Cyanea nozakii*. This paper was first presented at the Topic Session on “The human dimension of jellyfish blooms” convened at the PICES Fifteenth Annual Meeting in Yokohama, Japan, October 2006.

References

Hahtela I, Lassig J (1967) Records of *Cyanea capillata* (Scyphozoa) and *Hyperia galba* (Amphipoda) from the Gulf of Finland and the northern Baltic. Annales Zoologici Fennici 4: 469–471.

Table 5. Characteristics of some species of the genus *Cyanea*.

<table>
<thead>
<tr>
<th>Species</th>
<th>Tentacular pouches and gastric pouches</th>
<th>Peripheral canals</th>
<th>nematocyst batteries in the center of exumbrella</th>
<th>Umbrella diameter (mm)</th>
<th>Color of umbrella</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyanea nozakii</td>
<td>connected by transverse tubes</td>
<td>with numerous anastomoses</td>
<td>present</td>
<td>200–300, max 1200</td>
<td>translucent-whitish, light-brown</td>
</tr>
<tr>
<td>Cyanea capillata</td>
<td>separated absolutely</td>
<td>with anastomoses, curved</td>
<td>absent</td>
<td>1000, max 1200</td>
<td>wine-colored, light-yellow</td>
</tr>
<tr>
<td>Cyanea ferruginea</td>
<td>separated absolutely</td>
<td>without anastomoses</td>
<td>absent</td>
<td>>400</td>
<td>palm-brown</td>
</tr>
<tr>
<td>Cyanea purpurea</td>
<td>separated absolutely</td>
<td>with numerous anastomoses,</td>
<td>present</td>
<td>>80</td>
<td>purple</td>
</tr>
</tbody>
</table>

