Plankton and Benthos Research
Online ISSN : 1882-627X
Print ISSN : 1880-8247
ISSN-L : 1880-8247
Original Papers
Larval development and spawning ecology of euphausiids in the Ross Sea and its adjacent waters in 2004/05
Kenji TakiTakashi YabukiYoshifumi NoiriTomonari HayashiMikio Naganobu
Author information
JOURNAL FREE ACCESS

2009 Volume 4 Issue 4 Pages 135-146

Details
Abstract

The horizontal and vertical distributions of larvae and reproductive timing of euphausiids were investigated in the Ross Sea and its adjacent waters during austral summer 2004–2005. Occurrences of larvae of Euphausia frigida and E. triacantha were confined to the northern oceanic area where the Upper Circumpolar Deep Water prevailed, although their juvenile and adult stages extended the distribution further southward to the area where cooler Lower Circumpolar Deep Water prevailed. Larvae of Thysanoessa spp. were widely distributed within the oceanic to slope areas but did not occur on the shelf as juvenile or adult stages. Eggs and larvae of E. superba occurred with gravid females along the slope, but no juveniles occurred concurrently. Thus the slope does not appear to be a nursery ground for this species. The distribution of E. crystallorophias larvae was mostly confined to the shelf in the juvenile and adult stages. The onset of deepening was from early and later frucilia stages onward for E. triacantha and E. frigida, respectively. However, Thysanoessa spp. were concentrated increasingly within the surface layers from furcilia I onward. The onset of recruitment to calyptopis I appeared to be earlier in the more northern species with the exception of E. crystallorophias, which recruited before E. superba. The intense spawning of E. crystallorophias and E. superba coincided with a period of development of a coastal polynya. Generally, the onset of spawning of euphausiids appeared to be related to the latitudinal distribution and timing of sea-ice melting. Relationships between surface temperatures and development and recruitment of larvae of euphausiids are discussed.

Content from these authors
© 2009 The Plankton Society of Japan, The Japanese Association of Benthology
Previous article Next article
feedback
Top