The cyclopoid family Oithonidae is often the most abundant group of pelagic copepods in estuarine, coastal and oceanic waters throughout the world (Paffenhöfer 1993, Gallienne & Robins 2001). Although their numerical importance has been increasingly recognized, our present knowledge on the ecology of oithonid copepods is still rather limited compared to calanoids.

Early laboratory studies using cultured prey have shown that oithonid copepods are omnivorous, ingesting a wide variety of autotrophic and heterotrophic prey items (e.g. Lampitt & Gamble 1982; Drits & Semenova 1984; Uchima & Hirano 1986). Oithonids have also been observed to feed on fecal pellets of other zooplankton (González & Smetacek 1994), though their coprophagous feeding is still controversial (Reigstad et al. 2005; Iversen & Poulsen 2007). Recent experimental studies employing natural prey assemblages have revealed that oithonids feed selectively on microzooplanktonic protists, such as ciliates and heterotrophic dinoflagellates (e.g. Nakamura & Turner 1997; Lonsdale et al. 2000; Castellani et al. 2005a; Atienza et al. 2006). Considering their high abundance, oithonid copepods may serve as an important conduit to transfer microbial production to higher trophic levels in marine pelagic food webs.

Oithona similis Claus, a small oithonid of 0.7–0.9 mm body length, dominates the copepod community in terms of abundance throughout the subarctic Pacific (Mackas & Tsuda 1999), but its trophic ecology and role in this region are not yet well understood. Therefore we examined the feeding rates and selectivity of O. similis on natural assemblages of microplankton during the spring bloom in the Oyashio region. The emphasis of our study was to assess the importance of protozooplankton (ciliates and dinoflagellates) as a food source for O. similis even under bloom conditions in the Oyashio region, though the predation by the copepod did not have a significant impact on protozooplankton assemblages.

The present study was conducted at a station (42°00′N, 145°15′E, 4,000 m deep) in the Oyashio region, western subarctic Pacific from 16 to 21 April 2007 during a cruise of the R/V ‘Hakuho-Maru’. During the study period, the station was under diatom bloom conditions (chl. a concentrations: 2.5–5.8 µg L⁻¹, T Kobari, unpubl. data). Experiments were made on three occasions using female specimens sampled on different dates (Table 1). Copepods were collected by slow vertical hauls from 10 m depth using a ring net (45 cm mouth diameter, 50 µm mesh size) equipped with a large non-filtering cod-end. Adult females of O. similis were immediately sorted out in a
constant temperature room (\(~4^\circ\text{C}\)) using a dissecting microscope and placed into 500 mL glass containers filled with seawater. These specimens were maintained overnight in the room. Seawater for experiments was collected from 5 m depth with 10 L Niskin-X bottles mounted on a rosette multi sampler and screened through an in-line filter (64 \(\mu\text{m}\) mesh). This screening procedure may have altered the composition of natural prey assemblages for the experiments by removing large diatom chains or by damaging some fragile ciliates, but was necessary to remove all metazoans. The screened seawater was mixed gently and poured into six 280 mL acid-washed polycarbonate bottles. A 200 mL sample was also taken from the screened seawater and immediately fixed with acid Lugol’s solution. By using epifluorescence microscopy, however, it was found that the dominant taxa of dinoflagellates and diatoms, were counted under an inverted microscope at a magnification of 200\(\times\). Identification of ciliates was based on Montagnes & Lynn (1991) and Strüder-Kypke et al. (2001). Identified species and morphotypes were pooled into taxonomic categories and size classes (Table 1). Dinoflagellates were assigned as either athecate or thecate forms, since it is difficult to distinguish autotrophic from heterotrophic cells in samples fixed in Lugol’s solution at a final concentration of 2% for enumeration of the remaining prey organisms.

The fixed samples were concentrated to 10 mL by settling in a glass cylinder for at least 24 h. A 0.5–1 mL aliquot of the sample thus concentrated was transferred to a counting chamber. Microplankton cells (>10 \(\mu\text{m}\)), including ciliates, dinoflagellates and diatoms, were counted under an inverted microscope at a magnification of 200\(\times\). Identification of ciliates was based on Montagnes & Lynn (1991) and Strüder-Kypke et al. (2001). Identified species and morphotypes were pooled into taxonomic categories and size classes (Table 1). Dinoflagellates were assigned as either athecate or thecate forms, since it is difficult to distinguish autotrophic from heterotrophic cells in samples fixed in Lugol’s solution. By using epifluorescence microscopy, however, it was found that the dominant taxa of athecate (Gymnodinium spp. and Gyrodinium spp.) and thecate dinoflagellates (Oxytoxum spp.) during the study period were non-pigmented (T Ota, unpubl. data). Cell volume of each prey category was estimated from measurements of linear di-
mensions made with an image analyzer with CCD camera, by assuming simple geometrical shapes.

Clearance and ingestion rates of *O. similis* were calculated for each prey category according to the equations of Frost (1972) only when the difference in prey concentration between control and experimental bottles proved significant (Student’s *t*-test, Table 1). The ingestion rates were converted to carbon on the basis of prey cell volumes using a factor of 0.19 pgC μm⁻³ for ciliates (Putt & Stoecker 1989) and the equation log pgC (cell⁻¹) = −0.119 + 0.819 × log volume (μm⁻³) for athecate dinoflagellates (Menden-Deuer & Lessard 2000).

In all three experiments, the microplankton assemblage was dominated by diatoms (Table 1), mainly consisting of *Thalassiosira* spp. and *Chaetoceros* spp. Athecate dinoflagellates were the second most important component of the microplankton, whereas thecate dinoflagellates were less abundant. Ciliates, including *Myrionecta rubra* (Lohmann), aloricate choreotrichs and tintinnids, accounted for 5–11% of the total microplankton abundance. Aloricate choreotrichs were separated into three size classes (<20, 20–30 and >30 μm in maximum cell dimension); dominant genera were *Lohmaniella* for the small group, *Strombidium* and *Leegaardiella* for the medium group, and *Strombidium* and *Strobilidium* for the large group.

Oithona similis fed on all size classes of aloricate choreotrichs and *M. rubra* across the three experiments, with clearance rates of 2.8–11.9 and 3.1–6.6 mL copepod⁻¹ d⁻¹, respectively (Table 1). Clearance was detected on tintinnids in two out of the three experiments, with a rate of 4.2 mL copepod⁻¹ d⁻¹. Athecate dinoflagellates were ingested on only one occasion, with a relatively low clearance rate of 1.4 mL copepod⁻¹ d⁻¹. No detectable clearance of thecate dinoflagellates and diatoms was measured during any experiment. These results indicate that *O. similis* fed selectively on ciliates over dinoflagellates and diatoms, independent of their relative abundances. Food particle size is an important factor governing prey selection in copepods (Berggreen et al. 1988), but no clear difference was found in cell size, expressed as equivalent spherical diameter (ESD), between the three prey categories examined in the present study (Table 1). Another important factor that potentially influences copepod feeding preference is the motility of prey, especially for ambush feeding copepods such as *O. similis* (Jonsson & Tiselius 1990; Jakobsen et al. 2005). Svensen & Kiørboe (2000) demonstrated that *O. similis* detects its prey remotely from the hydromechanical signals generated by the swimming of prey organisms. Hence, highly motile ciliates may be positively selected for by *O. similis* compared to less motile dinoflagellates and immobile diatoms due to their higher detectability by the copepod. Higher clearance rates on ciliates than on dinoflagellates or diatoms have been reported for *O. similis* (Nakamura & Turner 1997; Castellani et al. 2005a) and other *Oithona* spp. (Lonsdale et al. 2000; Atienza et al. 2006), though the opposite trend has also been observed (Atkinson 1995, 1996).

The highest clearance rates on ciliates by *O. similis* measured in each experiment (8.8–11.9 mL copepod⁻¹ d⁻¹, Table 1) roughly agree with those reported for *Oithona* spp. (mostly *O. similis*) in subpolar and polar waters, where the thermal conditions (0–8.8°C) are comparable to the present study (~3–23.5 mL copepod⁻¹ d⁻¹, Atkinson 1995, 1996, Castellani et al. 2005a), with the exception of the extremely high value of ~75 mL copepod⁻¹ d⁻¹ at 0°C in Lonsdale et al. (2000). However, it should be noted that our high clearance rates might be underestimates to some extent due to bottle effects (i.e. incubation with a large number of specimens in a small volume), particularly for the large aloricate choreotrichs, whose abundance could have been greatly reduced before the end of incubation (cf. Table 1).

Clearance rates of *O. similis* were clearly related to size of ciliate prey (Fig. 1); the maximum rates were observed for the large aloricate choreotrichs with a size of ~35 μm ESD. This suggests that *O. similis* prefers large ciliates, possibly due to their easier detection and ease of capture of larger prey relative to smaller prey items. Nakamura & Turner (1997) also found such a size-dependent difference in clearance rates for *O. similis* when feeding on aloricate ciliates and dinoflagellates, with the maximum rate at 30–35 μm ESD. Tintinnids had a relatively large body size of 30 μm ESD, but clearance rates on them were similar to or even lower than those on other smaller taxa (Fig. 1). This rather low clearance rate for tintinnid prey may partly be explained by the presence of a lorica around their cells which is considered to reduce successful capture and ingestion by copepods (Stoecker & Sanders 1985).

The total ingestion rates of protozooplankton by *O. similis* ranged from 24.8–41.5 ngC copepod⁻¹ d⁻¹, which is equivalent to 5.1–8.7% of its body carbon d⁻¹ (Table 2). Large aloricate choreotrichs and *M. rubra* together made up more than half of the total carbon ingested (Table 1). Based on the relationship between respiration rate and temperature (Castellani et al. 2005b), the daily carbon requirement for respiration of *O. similis* was calculated as 12.7 ngC copepod⁻¹ d⁻¹ or 2.6% of body C d⁻¹, assuming a respiratory quotient of 0.97 (Ikeda et al. 2000). Thus, the ingestion rates measured here were about 2–3
times higher than the metabolic expenditure of *O. similis*. This indicates that protozooplankton, especially aloricate ciliates, are an important food source for *O. similis* even during the spring diatom bloom, though the contribution of other potential foods including phytoflagellates (Castellani et al. 2005a), copepod nauplii (Nakamura & Turner 1997) and fecal pellets (González & Smetacek 1994) was not assessed in our experiments.

To determine the abundance of *O. similis*, a ring net (36 cm mouth diameter, 63 μm mesh size) equipped with a flow meter (Rigosha) was hauled vertically at a speed of 0.5 m s⁻¹ from 150 m depth on 16, 18 and 20 April. Samples were preserved immediately on board in a 2% formaldehyde-seawater solution buffered with borax. Adults and copepodites of *O. similis* were enumerated under a stereomicroscope. Abundance of the *O. similis* population (adults and copepodites) ranged between 1,410 and 2,360 indiv. m⁻³ during the study period. Assuming that the weight-specific ingestion rate of *O. similis* was independent among the developmental stages of the copepod (cf. Table 2), the population ingestion rates were estimated as 23.4–55.8 μgC m⁻³ d⁻¹, which equates to 0.3–1.5% and 0.1–0.4% of the ciliate (3.8–9.8 μgC L⁻¹, T. Ota, unpubl. data) and total protozooplankton biomass (14.0–35.6 μgC L⁻¹) in the surface water, respectively. Thus, the predation impact on the protozooplankton assemblage by *O. similis* appeared to be low in the Oyashio region during spring. However, considering that the abundance of *O. similis* reaches as high as ~20,000 indiv. m⁻³ in mid summer (Y Nishibe, unpubl. data), the copepod may seasonally be important as a consumer of protozooplankton and as an intermediary in the transfer of microbial production to higher trophic levels in this region.

Acknowledgements

This study is a part of the research program Ocean Ecosystems Comparison of Subarctic Pacific (OECOS). We thank the participants of OECOS-WEST cruise and the captain and crews of RV ‘Hakuho-Maru’ for their help in field sampling. YN is grateful to Dr. A Tsuda for providing laboratory facilities for microscopic analysis. This research was partly supported by a Grant-in-Aid for JSPS Fellows to YN (No. 19·4747) from the Japanese Society for the Promotion of Science.

References

Montagnes DJS, Lynn DH (1991) Taxonomy of zooplankton trichs, the major marine planktonic ciliates, with emphasis on the aloricate forms. Mar Microb Food Webs 5: 59–74.

Nakamura Y, Turner JT (1997) Predation and respiration by the small cy-