物理教育 第43巻 第4号 (1995)

日本物理教育学会年会
第12回物理教育研究大会 分科会の報告

1995年7月30日（日）、31（月）に実施された標記の大会では、2日目に4つの分科会を持ち、熱心な討議が行われました。3時間にわたる議論の内容をすべて報告すべきところですが、紙数の関係で要旨のみとさせていただきます。記録を担当してくださった方々に厚くお礼申し上げます。

（大会実行委員会）

第1分科会 物理教育とは何か
提案者 津川 昭良（宮城教育大学）
佐々木 武（県立秋田工業高等学校）
司会者 佐々木惠伊（仙台第三高等学校）

提案1 津川 昭良

1. はじめに
現行学習指導要領の実施により理科教育の時間数が縮小されたのは、小学校から高等学校まで全般的なことなので、物理教育の場を他にも探さなくてはならない。将来の教員を目指している教育学部の学生たちは、子どもを教育するという最終目標を持っているので、これらの学生を理科好きに育てて送り出すことによって、間接的に理科好きな子供を増やすのも方法の一つと考え、それを持提案したい。

2. 多様な開講科目の中から
提案者が現在担当している講座の中で物理科学の内容を取り入れようとする科目は、材料加工1Bと技術科学入門である。授業の狙いから見ると技術科学入門に取り入れるのが自然のように思わわれる。

3. 教員養成を通しての物理的教育
受講者は小学校教員養成課程の他に中学校教員養成課程や特殊教育の副修の取得を希望する学生が加わっているので、興味の対象も異なり幅も広がったのでまちまちである。この鉱石科学入門で数式を扱うと、文科系学生はその後は出席しなくなるという経験を前年で味わった。最後まで受講させることが大切であると思うのでその点に配慮したつもりである。

(1) 技術史の中に数学や物理的内容を組み込む。
生活の必要性から生まれた古代歴史の中の数学や物理学は繋がる。
60進数・20進数・対数の考え方・面積の求め方の技術も科学も、理工学系の中だけにあるものではない。
言語・文字による伝承の技術

(2) 計算だけでなく、できるだけ手を使った作業を取り入れる。
立体模型を作ってみる。
正多面体で表す古代の元素から現代の周期律表を作り上げられるまでの歴史的流れを振り返る。
収集した資料や試料の測定結果などの質や量を分類したり比較することは、理科だけでなく、文科系でも必須の手続きであり、作業であるように思うので、これを共通に扱うことができる対象が周期律表ではないかと考える。

(3) 物理だけに拘らない。中世の著名な技術者・科学者を複数挙げて報告書にまとめさせる。

(4) 簡単でも計算をしたり、図形的に物理の意味を理解させる。
惑星のデータを使ってケプラーの法則を確かめる。
円錐面を使って運動方保存の法則を確かめる。

(5) 物理教育は、物理の授業の中だけではない。
課外活動・保護者、父兄と一緒で実験。
青少年のための科学の祭典。
メディアを利用した実験。

提案2 佐々木 武

1. はじめに
生徒の理科離れ、物理離れという教育現場は変わっていないが、社会的な客観事情は理科教育のあり方に関心を持つようになってきている。
“問題が生じたら、まず元点に戻って考えることだ”と教えられてきた。物理はやさしい学問ではないが、難しい思い込む前に、物理の面白さ、すばらしさを体験させてやれないものかと思う。

2. 現象の実体験が不足してきている生徒
現在の小・中・高校生は以前に比べて外で遊ぶ時間が短くなっており、現象の実体験が少なくなってきている傾向がある。その欠けている部分を授業の中で補ってやることが必要ではないか。むしろ積極的にその不足分を補完してやるのも一つの授業形態でないかと思う。

(451)
“一つの現象の原理を理解すれば、その他の現象も原理・解釈できる”。という物理のすばらしさや楽しさを多くの生徒にわがわが欲しくなる。

【青少年のための科学の祭典】会場における“なぜだろう”“そうだのか”という疑問と驚き・感動に満ちたあの子供たちの胸が印象的であった。日常の物理が何にも接する場を多く提供することが、理科離れ・物理離れを克服するための原点のような気がする。

3. 実践の中から

①少なくとも学期に一回は特別実験授業を実施
②実践の実態に合わせた教材の選択
③基本概念や法則をていねいにおさ。「単位は式を
表し、式から単位は導かれる」ことを具体例を挙げ
ながら1年間指導して指導
④授業における工夫として
※その時間の最低到達目標の設定
※作業学習、科学史やエンジニア、VTRの利用
※まず教師自身が燃える必要がある。そのためには教
師間の連携が不可欠。

4. おわりに

“生物は逆境の下で進化する”といわれるように、物
理教育の厳しい現実を直視し、教師自身の目新しさと,
良きチームワークを保ちながら「新しい物理教育」を考
えていきたいものである。

全体討論から

＊物理的のものが見方を育てることと、物理を教えるこ
とは、違うのではないか。
＊物理教員を育てるだけでは不十分。まりのの人間が
物理的考え方でできるようにしなければ。
＊文部省・専門学者は、“教育の平等”のもとに物
理・数学の専門後継者の育成に失敗した、という。
専門教育への分離は、いつの時期が適切か。
UNESCOでもscience literacyは、総ての人の権
利とうたわれているが,
数学では、選択制を拡大するなどして、中・高から
レベルを上げなければならないべき世界に遅れをとるという声が
上がっている。
＊人間教育の一環として、様々な生徒に将来物理を使
う・使わなくても差付けては、夢や憧れを育てたい。
また、他の授業や授業以外の場面でも、興味あるこ
とを伝えたい。
＊同時に、非科学的社会にあって、物理を通して合
理性・実証主義を教える必要がある。
＊物理現象を知ることで論理的のもの見方、考え方が
身に付けば。運動部では、頂点を作ることにより、
底辺が広がると言われるが、科学では違うのでは。
科学技術立国の教えているのは、底辺の科学教育・技術
教育ではないか。
＊生徒は、英語・数学を仕方なく勉強しているのが多
い。現代の最大の遺産を伝えていくことも確かに大
切だが、PSSCが素粒子へ通り着くため教材の精選
をはかった反動が現われてはいかない。
楽しい物理は必要である。音楽好きは多いが学校教
育の成果か。理科は学校でやらなければならない。試行錯誤
するしかない。学問体系が確立しているか、入試に
的を絞れば簡単なのか。
学校音楽は、一緒にやる楽しそうであるということ。
ついでに、学習指導要領について、社会の先生から
は、世界で、東洋・イスラム圏の扱いが小さいと
の声が聞かれるようだ。
音楽・物理についてはどうか。日本人の体質に合わ
ないということは。
だが、西欧近代の合理主義・実証主義を食わず嫌い
というのでは困る。物理を学ぶことは文化・文明の
問題を含む。
物理教育はその目的を明確にする必要がある。高校
で物理を学ぶ必要性、物理でなければならない必要
性は何か。
＊物理教育は、一般教養・専門家育成の両面をもつ。
高校では物理の基礎を教えるべきだと思うが、生徒
は体験が乏しい。体験を通して様々な発想が育ま
れる。先行経験が大切。
＊生徒がこれまでに学んできたことを、教師は知る必
要がある。また生徒がこれから学ぼうことも。
＊物理を知らなくても生きていけるという認識で、
何学ぶかも理解させる必要がある。
＊新技術、特に電子工学に探求活動が取り入れられてい
が、疑問・仮説・検証の過程を一度でも体験すれば、将来の科学に対する姿勢が変わる。
＊教科書の探求活動の記述は不親し。考え方を重視す
るのか。結論か。
＊今の生徒は、正解を求めようとする傾向が強い。
＊物理は西欧近代に誕生。生活の中に浸透している。
物理教育の必要性に自信を持っている。
＊世界史必修が国際化。科学の履修がハイテクの社会
第12回物理教育研究大会

に対してするためといえること、国語・英語・その他の教科の教材として物理が取り上げられている。
※国際化のための教育は3才までと言われるが、それを行うのは母親。

教師ベース・学者ベースの授業になりがちだが、生徒サイドにあった研究の不足ではない。個人差・
発達段階に応じた幅を認めてもらいのでは。

※新聞・TV・雑誌などで科学的報道が溢れていている。

専門家のコメントにも基礎的科学知識の欠落が問われることがある。

※高校で何をすべきかを考えるとき、大学進学率が
最優先という状況がある。

※女子高校、未来の主婦・母親として、今学ばない
ければ、一生学ぶ機会がないかもしれないというこ 
とで、物理を必要にしている。身近な物理をできる
だけ取り入れ、実験も最低学期1回は実施。

※男子の進学率。学期始めは意欲的。問題が解けない
というで、自信を失い、意欲が失われる。

（記録） 小高信子（宮城県第一女子高校）
戸田慶幸（宮城県多賀城高校）

第2分科会 「インターネットの教育への利用」

（提案者） 岩本正敏（東北大学院・工学部）
船木喜夫（秋田県立図書館）
（司会者） 千葉宗昭（宮城県第二女子高）
（会場に回線を取り、実際にインターネットを見ながらの講演となる）

司会 使用した経験からインターネットとコンピュータ
通信は別物ではないかと考える。どのように教育に生かすか、講演の後、皆さんで話し合っていきたいと思う。

岩本 パソコン通信はネットコンピュータを中心とした
集中型で、インターネットは自立した分散型である。ス 
タートは1997年核戦争の危機感が高まり、パックアッ 
プ網の研究である。最初は軍と各大学がつながって 
いたが、学术用として、軍用から切り放され民間に移行 
した。1993年情報スーパーハイウェイ構想では一般家 
庭、幼稚園から大学、国会図書館まですべてインター 
ネットでつながると宣言した。「物質」と「情報」の違いは
「物質」は所有権が変わるが「情報」は共有するもので 
ある。これから先、マスメディアは役に立たなくなるの 
ではないか。考え方も変わってき、苦労して作ったも 
のは人類のためにという「フリーウェア」の考えも広 
がっている。OA化とワープロはまったく関係がない。 
ワープロを導入し、事務が自動化した訳ではない。
コンピュータ利用技術の変遷として、今までは一人的 
の能力向上（高速演算、情報整理、オートメーション）
だったがこれからはグループ活動（表現・伝達としての 
ワープロ、電子ブック、パーソナルコンピュータ、ファミコン）に 
なるのではないか。

船木 3月までは高校の物理教師だった秋田県立図書 
館のコンピュータ担当として今は図書館にいる。どんな 
ふうに使えるか具体的話をしたい。はじめはパソコン通 
信を面白半分でやってきた行動範囲を広げようとマッ 
キントッシュを使ってインターネットに入ったら。アメリカ 
とのメールでは往復1週間かかるが、電子メール 
では翌日に行事がくる。価値も安価で、実利的に即時性 
が良い。NASAのホームページに入り、惑星写真が見える。今、物理教育に使えるところは少なく、授業で役 
立つかどうかはこれからだが、原理原則の授業を変えて 
いくのはまだいかがいか。問題点としては英語がある程 
度できないと海外と接続できない。アクセスポイントと 
線の大きさである。線が細くて料金と時間がある。
ニュースを探すすりも発信元が1万5千個あり、どこ 
から何を探し、どう見るのかの絆み込みの指導が必要 
である。一度、どのようなものか体験して、授業にどの 
ように使うか考えて欲しい。

話し合いに入る

司会 インターネットを知る前と後では人生観が変わる。 
世界が狭くなった感じがする。老若を問わない。趣味、 
人生に広がりが出てきた。

菊池（東海大学） 机上から世界の研究所が見学できる。

吉田（立教大学） 卒業生との通信、大学の進学情報や 
りとりできる。

司会 学生は当たり前に使っている。我々が知らない 
でよい。

岩本 インターネットを始めるには大学と接続すれば大
学まではかかるがインターネット使用料は大学が払って 
くれる。県、県研修センターが加入していれば使用料は 
県が払ってくれる。趣味で始めるのならネットワークプ 
ロバイダーに入らないといけない。例えばIIIがある。
料金はパソコン通信とほぼ同じである。

5年くらい前の中古のマックに最新のモデムに付けて 
も20万円くらいである。

各企業は広告塔のように使える。仙台駅前広告塔よ 
り魅力的ではないか。新製品ニュースを発信できる。

NASAではシューメイカー・レピュ彗星の生のデータ 
が提供される。宇宙の真実らしさを眺めながら地球環 
境も分かり、環境教育にも役立つのではないか。

情報量が増加し、多様化、専門家し、情報を集めるの 
が困難になっている。
「集める」から「発信する」へ、「量」から「質」の時代へ。マスメディアにWWWを検討中で民間放送は曲がり角にきている。全国規模の新聞も危ない。実験の社会と仮想的な社会の２つの社会で生きる。時間的、時間的空間を超えたコミュニケーションになる。

佐藤（仙台二高） 教師70人中1人しかパソコン通信していない。生徒の方が詳しい。教師と生徒のギャップが大きい。

岩本 教育学は学校だけではない。学校だけで教育していると考えるのは危険である。現場の教師は従来のやり方を繰り返しているか新しいメディアでは教育が様変わりし、世の中の隔絶しているのは民間ではありえないことである。学校、役割が適している。

司会 木村はどう思われたかどうございました。

（記録）佐野周太郎（宮城県矢本高校）

第3分科会「次の学習指導要領に向けて」

（提案者）唐木・江（攻玉山高）

山田善春（工芸高）

三木久己（貝塚南高）

（司会者）志摩茂男（名北高）

第3分科会２名の参加を得て、司会志摩茂男氏（名北高）より３名の提案者（唐木・江・攻玉山高、山田善春・工芸高、三木久己・貝塚南高）の紹介の後、それぞれの発言があった。以下はその発言の要旨である。

１．唐木 学会としての望ましい教育課程案を未乾にも発足する審議会に向けて準備する必要がある。いくつかも紹介したい。①93年の高校教員へのアンケートによれば、１年で検学を2単位必修に、2年より文科系にコース分けをし、文科理科体系を履習せよとする案に支持が集まった。②小中高を見通した内容としては、高校１・２年で必修12ｈの「新理科」が考えられる。物質世界の科学（物性化の無機分野）および生命の科学（化学の有機生保家の分野）に各３年単位必修とする。その後考察に適したコースを選択する。なお、科学技術という新しい教科の設置は危険が多いと思う。③95年7月の学術会議のシンポジウムで同様な事象を核とする物理科学と、生命現象を核とする生物科学に分科し（総合化とも言えるか）、各３単位を必修することも考えた。中高は一貫として捉えるべき人生的分野（進路模索期）であり、選択を強制するにあたり無理があるからである。あらかじめ6単位は必修として経験させるべきと考える。

２．山田 理科教育の危機が叫ばれながら未だ解決の方向は出ていない。近畿支部では昨年より検討を始めてい系。次の改訂に向けての現在の動向および望まれることを報告したい。[現状分析]ア、中等教育での急激な理科離れと物理履習者の減少がある。原因としては中学教育の明るみ、高校入口の難度、学習の少なさ、入試に不利な点がある。根拠には科学信奉者がいないではないかと思う。イ、理科の中での物理履習者の減少がある。

大阪府内の公立高では物理生地があるがむしろバランスよく履習されているが、私立では化学が圧倒的である。ウ、選択開始学年の低学年が目立ってきた。これにより化学が必修にされやすく、逆に物理は必修にならないと生き残れなくなつつつある。[次の改訂に望まれること]ア、多様化を実施するためには学年での基礎能力の保証が必要である。市民の教養としての基礎的科目を必修とし、その後に選択科目を履習させる。イ、総合科目は選択に入る前に自然科学を歩ませるために必修なものである。ウ、物理分野の魅力回復のためには実験の大幅な導入と、計算問題中心の授業を止めることである。なお、近畿支部では市民の教養としての自然科学の教養の必要性を考えて教科書作りに取り組んでいるが、理科を2教科に分断する案には反対である。安易に技術家庭科との合科はすべきではないと考えている。

３．木村 近畿支部カリキュラム検討委員会としては「市民の教養の自然科学」を必修することを考えている。これを3～6（標準4）単位必修とし、あわせて実験科学（物質生地の実験を融合したもの）の２単位の6単位を必修とする案である。その後に選択科目（物質生地とするか、物質系生命系とするかは未定だ）を置く。あわせて文系のための自然科学（必修自然科学の領域的なもの）も設定したい。「市民の教養の自然科学」の基本原理について説明する。現代の科学の自然観、それは階層的自然観、進化的自然観、科学的自然観から構成されていると考える。この立場からの教科書の全体構成は次のようにする。[1]科学とは何か。自然認識の歴史的変遷。[2]自然科学の階層の構造とその組み立て。それは物理的階層、化学的階層、生物的階層、地的階層により成る。[3]物質、エネルギー、エントロピーの循環と環境。[4]宇宙、物質、生命の進化。[5]自然科学を学んで。科学と技術の関係、という構成になる。従来の物質生地のつまみ食いとなることは避け、法則と哲学を持った市民の自然観を養うものを作ろうとしている。

４．３次の発表の後に質疑応答があった。紙面の都合上紹させていただくが次のようであった。ア、現行では1年で化学IBBを教える際、数学の知識が乏しいゆえに苦労がある。生徒の実態に合っていない。イ、改訂中学物理は暗記科目になってしまった。次の改訂の際には小分科会「次の学習指導要領に向けて」
中高の流れをしっかり捉えて欲しい。実際、総合化が言
われているが中規模の中規模化して欲しくない。説明は
避けるべきだ。等々多くの意見が出されましたが、最後
に司会者より、21世紀に向けて経済を残す現場が納
得し、学生のためになる学習指導要領を作ってゆきたい
との言葉で分科会を終了した。
（記録） 笠野義博（宮城県工業高校）
塚込之（宮城県女川高校）

第4分科会「理科教育の必要性」

近畿支部カリキュラム検討会の皆様によるパネルディ
スカッション。司会は常多幸夫（大阪府立長尾高校）
参加者は二十五名であった。パネラーの方々と発表者要
は以下のとおり。

・「理科教育の目的再考一理解、能力、態度、目標の
教養的階段一」筒井和幸（大阪府立東亜工業高校）
理科教育の目的についての再考に当たり現在の指導要
顧有について理科教育の目的を確認。一方では現在での懸
問にピラミッド型と目的分離、目標のラセン階段を示すと
じ、どちらも過去のものとは異なっていると指摘。理科
教育の目的の一つである「科学的な考え方、態度の育
成」が精神文脈にも寄与することを指摘する。理科
学の取れた理科教育を行うために、目標をラセン段階
型に設定すべきであることを提唱した。

・「物理教育における実験の役割」木村愛子（兵庫県
立こやの里養護学校）
科学実験なら何でも必要で効果的なのか、という点に
ついて考察。望ましい実験のあり方について提言を行っ
た。日常の感覚からの意図を示し、疑問を抱かせるこ
とで、それを解決していく過程での感動があると、実
験が個々の生徒の「実験体」をとることを具体的に通
じて示した。

・「科学・技術・社会との関連性を踏まえ教育ー現代
社会における科学教育の意義と役割ー」岡本正志（大
阪女子短期大学）
近代社会の中での科学教育の役割を歴史的に検討し、
我が国の理科教育の特殊性、特にその実用学的性質を明
らかにする。その上で、社会との関わりを視野に入れた
科学教育、例えば、市民が現代社会の諸問題をアセスメ
ントできる上を持ってゆくための教育が必要と指
摘した。

・「理科教育の必要性」菅野礼司（元大阪市立大）
文系も含め、すべてのものが市民的素養として自然科
学を学ぶべきである。特にこれに考察しても、自然科学（教育）がその時代の世界観、哲
学、に影響しており、現代においても、新しい自然観成
に寄与することを広く認識すべき。教育内容として科
学技術の人類生活に及ぼす影響について判断できる教養
を養うようなものとすべきと提言した。

これら4件のパネラー発表では、いずれも理科教育の
必要性を現代日本の状況で再考し、並行して教科内
容についても新しい視点が必要であるという提言がな
されていた。
パネラーの発表に続き、短時間ではあったが会場の参
加者を交えたディスカッションが行われた。その中で、
「理科離れ」といわれているが、実際にはもっと根が深い
「学習離れ」が起こっている、という指摘があった。こ
れを受けて、現代の中高生の学習離れの実例や教育制度
そのものの問題点に関する議論が盛り上がった。

最後に司会者が、「単に理科教育の必要性」と叫ん
でも、その人の立場によって捉え方や論理が異なる。
もっときめ細かいディスカッションを続けて行き、明日の
行動へとつなげたい。」とまとめた閉会式。
（記録） 木村 清（兵庫県立短大）
大塚洋一（宮城県立ろう学校）

12回大会参加者一覧

<table>
<thead>
<tr>
<th>県 別</th>
<th>参加者数</th>
<th>県 別</th>
<th>参加者数</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道</td>
<td>4</td>
<td>新潟県</td>
<td>2</td>
</tr>
<tr>
<td>青森県</td>
<td>1</td>
<td>愛知県</td>
<td>1</td>
</tr>
<tr>
<td>岩手県</td>
<td>1</td>
<td>岐阜県</td>
<td>1</td>
</tr>
<tr>
<td>秋田県</td>
<td>7</td>
<td>滋賀県</td>
<td>2</td>
</tr>
<tr>
<td>山形県</td>
<td>6</td>
<td>大阪府</td>
<td>17</td>
</tr>
<tr>
<td>宮城県</td>
<td>42</td>
<td>三重県</td>
<td>2</td>
</tr>
<tr>
<td>福島県</td>
<td>10</td>
<td>兵庫県</td>
<td>4</td>
</tr>
<tr>
<td>栃木県</td>
<td>2</td>
<td>岡山県</td>
<td>1</td>
</tr>
<tr>
<td>群馬県</td>
<td>2</td>
<td>広島県</td>
<td>2</td>
</tr>
<tr>
<td>埼玉県</td>
<td>3</td>
<td>香川県</td>
<td>1</td>
</tr>
<tr>
<td>東京都</td>
<td>22</td>
<td>福岡県</td>
<td>1</td>
</tr>
<tr>
<td>千葉県</td>
<td>2</td>
<td>長崎県</td>
<td>2</td>
</tr>
<tr>
<td>滋賀県</td>
<td>3</td>
<td>不明</td>
<td>1</td>
</tr>
<tr>
<td>山梨県</td>
<td>1</td>
<td>合計</td>
<td>143</td>
</tr>
</tbody>
</table>

(455)