1. はじめに
電磁界の生体影響の問題への関心が高まっている。本誌で電磁界の安全性の問題が取り上げられる背景には、「電磁界が健康に害がある」という説が、一般向けの書物やマスコミで頻繁に取り上げられる現状があると思われる。このような推測の背景となっている専門家の問題提起は、「電磁界の生体作用は基本的に熱作用と刺激作用で解決済み」という楽観的な見方に一石を投じ、ディベートを通してこの問題への理解を深める意義を持つと、この問題提起が、日常生活で電磁界に曝される人々に正しく伝えられているとはいえず、十分な根拠がないまま、学問的な議論の枠を離れて人々の不安を煽っている。

本稿では、電磁界の生体影響についての、基本的な事項と専門機関でのコンセンサスに基づく考え方を示す。

2. 電磁界と生体のカップリング
電磁界とは電界および磁界の総称であり、電磁場とも呼ばれる。電界は静止電荷に働く力（コロノ力）による、また磁界は運動電荷の運動方向と直交する向きに働く力（ローレンツ力）により定義される。時間的に変化する電場および磁場は互いの源となり、電磁波としてエネルギーを運ぶ。電磁界の生体への作用の根元が、生体を構成する物質のもと電荷に働く力であることを認識することは大切である。

低周波領域（3 kHz以下の領域をここでは低周波領域と呼ぶ）では、体液中のイオンや構造物のために、生体組織の被誘電率が大きく、100に達する。周波数が高いなるにつれて被誘電率が小さくなり、マイクロ波領域では主に水の被誘電率（約50）程度となる。導電率は0.1～5S/mのオーダーで、周波数によってあまり変化しない。低周波領域では大きな誘電率と導電性のために、外部電界が強くても内部電界は極めて小さい。このため、静電界や低周波電界では人体組織に強い内部電界を生じにくい。

生体組織には磁性体がほとんど含まれない。したがって数テスラ以上の強磁界でないと、磁界と生体組織の直接の結合は顕著ではない。変動磁界では電磁誘導により電界を発生するため、誘導電界との結合が支配的である。生体組織が非磁性的であるために、外部磁界は生体内部でもほとんど変化しない。磁界の影響に関心が持たれる理由の一つはこの点にある。

高周波電磁界（ここでは3 kHz以上のRFおよびマイクロ波を含む電磁界）は、波長に比べて波源から遠く離れると、電界、磁界が独立できなくなり、電磁波として振舞う。組織が導電性を持たないために、電磁波は組織内を伝搬しながら減衰する。電磁界の振幅が1/eに減衰する距離を侵入深さという。侵入深さは組織の導電率が大きいほど大きく、筋では、400 MHzで3cm、2.45 GHzで1.7cm程度、脂肪では、400 MHzで16cm、2.45 GHzで8cm程度である。マイクロ波領域では浸透深さが大きく、電磁界は体表面の近くでエネルギーガーの大半を失う。このエネルギーは熱に変わる。

電磁界と生体との結合では、生体の形状の影響も顕著である。身長が自由空間中の波長の約40%のときに、共鳴により他の周波数に比べて吸収電力が1桁程度大きくなる場合がある。人体の場合70 MHz、マウスでは2.45 GHz付近が共鳴周波数となる。このことは、入射電力密度だけでは曝露の強さが評価できないことを意味する。生体が波源までの距離が波長に比べて近い場合には、近傍電磁界の複雑さ、波源と生体との電磁的結合のため、曝露評価が非常に困難になる。最近は計算電磁気学の発展により、携帯電話使用時の頭部の電力吸収分布などの複雑な問題も実際に近い条件で評価できるようになっている。

実験室で用いられる曝露装置では、それぞれ曝露量の評価が全く異なることに注意が必要である。この場合、波源の電力や入射電力密度などでは適切な評価ができない。内部電界や比吸収率（組織や試料の単位重量当たりの吸収電力、SAR）で適切に評価する必要がある。

3. 電磁界の生体作用
電磁界は静電磁界、低周波電磁界、高周波電磁界のそれぞれで、生体との結合の特徴が異なり、生体影響も異なる。生体作用に関する報告は数多く、対象も曝露条件もささまとまり、さらにその結果もまちまちである。
電界・磁界・電磁波の生体影響

密度

試験をの筋さわれ３生生物示す証拠体静値は３ここでおおむね内にるよられてある界を異なってあもあるレも人体に磁界なさされる影響の存在するのも、ある磁界に磁界の状態がある研究関係を基であり、実験的実験でされる界などに影響が作用する観点から曝露電界には限界がある。

磁界的影響に関しても２Ｔ以下の急性の曝露では、人体に悪影響を及ぼす実験的な証拠はないとされている。慢性曝露の影響の研究は十分でないが、われ悪影響を示す証拠はない。地磁気（0.05 mT程度）を感知する生物が存在すること、10 mT程度の弱い静磁界でも化学反応に影響を及ぼす例があることから、弱い静磁界でも人体に影響を及ぼす可能性を推測できるが、影響の存在は示されていない。

3.2 低周波電磁界の生体影響

強い低周波電界に曝露されるとき、体表に表面電荷が誘導され、体毛に力が働いて知覚される。誘導体は体毛の密度、湿度などで変化するが、およそ10 kV/m程度である。この現象自体は健康に有害ではないが、長期的にはストレスとなるので避けるべきである。

低周波電界および磁界的確立した作用で、表皮での知覚以外の比較的闘争の低い作用は、すべて磁界が組織内に誘導する電流密度で説明される。この作用は神経や筋の興奮現象として知覚されるので刺激作用と呼ばれる。おおよそ10 μA/m²以上の電流密度で、閃光感覚などの軽微な刺激作用が生じる。心室細動のような重大な影響を生じることは心臓付近に1 A/m²以上の電流密度が生じる必要がある。この大きさの電流密度は、身体に直接電極を接触させない限り、外部電磁界で誘導することが非常に困難である。電磁刺激による除細動装置の開発が試みられながら成功をおさめていないことからもこれは確かめられる。10 mA/m²の電流密度を誘導する低周波電界は、およそ20 kV/mである。また、磁界では0.5 mTで全身が曝露されるとき、体表の末梢の電流密度で10 mA/m²を示す電流密度が生じる。電磁界による電流密度の誘導は身体の中心部で小さく、中心から遠ざかるほど大きい。

実験室レベルの研究では10〜100 mA/m²の電流密

(433)
4. 低周波磁界とがん

4.1 疫学調査

低周波磁界とがんの問題は、1979年に公表されたWertheimerらの疫学調査が、家屋の配電形式を高電流型（HCC）と低電流型（LCC）に分類した場合に、前者で小児白血病のリスクが2倍程度大きいことを報告したことが発端となった。その後多数の研究報告があり、リスクの上昇を支持する報告と否定する報告の両者がある。前者では、カロリンスカ研究所のAhlbomらの研究が有名である。

疫学研究がある因子と疾病との関連を示唆するとき、それらに因果関係があるかどうかを判定する評価基準として、ヒルの規準と呼ばれるものが用いられる。白血病やがんと低周波磁界的関連をこの基準で評価すれば、因果関係の存在は示されない。

(1) 関連の強さ：相対リスクが4程度を上回ることが関連の強さの目安となる。喫煙にともなう肺がんでは10以上。喉頭がんでは40以上の相対リスクが報告されている。これに対し、送電線の影響で報告される相対リスクはいくつかの例を除いて2前後にする。

(2) 影響の一貫性：同じ疾病に対する曝露の影響が一貫して見られることが必要である。脳腫瘍、肺がんなどさまざまな疾病についての報告があるが、一貫性は十分でない。小児の白血病は一貫性のある点で他の報告にややまさら。しかし、関連を否定する報告もあり、またAhlbomらの研究でも戸建住宅と集合住宅で影響に一貫性を欠いているなどの問題が指摘されている。

(3) 曝露-応答関係の存在：曝露と観察される現象の間に因果関係があれば、曝露の強さの増加にともない影響が強まることがあるが自然である。このような関係の存在を示唆する報告が皆無ではないが、一貫性のある関連の強化が見いだされていない。

(4) 実験室の証拠の存在：因果関係が存在するのであれば、自由に条件が設定できる実験室での研究によって曝露がその疾病を生じさせることを証明できるはずである。しかし低周波磁界による発がんは検証できていない（次節を参照）。

(5) 因果関係を説明できるメカニズムの存在：証明には至らなくても、影響の可能性をもっともしく説明できるメカニズムが推進できることがある。疫学研究で問題とされる1 μT以下の低周波磁界は、自発的に存在する神経脈の興奮による電気的現象よりもずっと小さな影響しか与えない。どのような機構により、自発的な電磁気現象よりも微弱な外部磁界が選択的に影響を及ぼすのか、合理的な説明がなされていない。

他にいくつかの項目があるが、低周波磁界の問題はどの項目も満足しない。したがって、疫学研究の結果から低周波磁界ががんのリスクを増加させるという因果関係の存在は認められない。

疫学調査では、絶対リスクの上昇が注目されがちであるが、相対リスクにも目を向けが必要がある。小児白血病は1万人に1人に満たない罹病率の小さな疾病である。このため、限られた調査対象の中で、偶然に曝露群に何人かの患者が集中しただけで、絶対リスクが大きく増加する。Ahlbomらの研究では、当初の対象人口が50万人であったことが強調されているが、白血病のケース数は全体で39、相対リスクが3.8とされる0.3 μT以上のカテゴリーのケース数は7に過ぎない。絶対リスクの小さな疾病では、調査基盤を非常に大きくしなければならないが、偶然の影響を受けやすい。このため、疫学研究のみで磁界と白血病の因果関係を確かめることは疫学研究者自身さえ悲観的である。

4.2 実験室での研究

弱い低周波電磁界が突然変異原となることを示す報告はない。したがって、磁界には遺伝子に障害を与えて、発がん遺伝子を活性化（イミゲネレーション）する作用はないと考えられている。このため、別の原因でイミゲネレーションした細胞のがん化を促進するもの（プロモーター）として、あるいは他のプロモーターの作用を増強するもの（コプロモーター）として、磁界が作用する可能性の慎重な吟味が行われている。生きた個体を用いた動物実験では、化学物質で発がんさせた細胞の乳がんが促進されたという報告がある。しかし、否定する報告もある。

メラトニンの分泌は夜間に上昇する。この上昇が100 μT以下の磁界により抑制されるという複数の研究報告がある。メラトニンががんの抑制作用を持つという仮説があり、この現象とがんの促進との関係が推測されている。しかし、メラトニン分泌の抑制は、ヒトでの実験では観察されない例が多く、またメラトニンとがんの関係も実験的には証明されていない。

1 μT以下の磁界により脳組織からのカルシウムイオン流出の変化は報告されている。この現象は複数の研究機関で観察されているので再現性が認められている。しかし、磁気の背景の静電磁界で決定される特性の周波数だけで作用が現れるとする「窓効果」というモデルを使って、ばらつきのあるデータのなかから変化の見られたデータだけを拾い上げているという批判的な解釈も可能である。曝露-応答関係が存在しないことが合理的な説明もない。さらに、カルシウムイオンの流出の変化

(434)
電界・磁界・電磁波の生体影響

が健康にもどのように関係するかが明らかにされていない。
これまでの研究報告を総合すれば、低周波磁界とがん
の関係の実験室での研究による証明は不十分である。

5. 高周波電磁界のアサーマル効果

携帯電話の急速な普及により、多数の一般の人々が機
器近傍での曝露を受けるようになった。このため、局所
に集中した高周波電磁界的影響に大きな関心が寄せられ
ている。脳腫瘍を発病した女性が、携帯電話の使用が原
因ではないかと訴訟を起こしたのがこの問題の発端で
あり、類似的訴訟が相次いでいるが、証証で因果関係が
認められた例はない。しかし、健康に関心を持つ人々の
疑問に正しく答えるために、具体的なデータを蓄積する
ための研究が各国で進められている。

最近の研究で注目されているのは、マイクロ波の曝露
によるラットの脳組織のDNAの1本鎖および2本鎖
切断の増加を示唆する実験報告である。これは、非電離
性のマイクロ波は電離放射線と異なりDNAに損傷を与
えないとされていた従来の定説に反する。このため、再
現性があるか、なぜこのような結果が生じたかについて
の慎重な吟味が必要とされる。

実験データの問題点として、背景の切断レベルが大き
すぎるもの、曝露直後に鴨が観察されず4時間後に観
察されることの適切な説明がないこと、パルス波と連続
波の実験に矛盾点があることなどが指摘されている。ま
た、この結果がDNAの切断の増加を示すものではなく、
DNAの修復機能への影響を示すという解釈も可能であ
り、両面からの検討が必要とされている。

実験手法上にも問題点がある。この実験の曝露装置は
マウスに0.4 W/kgの曝露を行うことを想定して作られ
た装置を用いたものである。この装置は円形導波管を
用いた閉鎖系であり、換気条件が温度に影響を与えやす
い。マウスより代謝量の大きいラットを用い、全身平均
SARが当初の設定値より大きな0.8 W/kg程度である
ことから、換気条件が適切でないと温度上昇による熱作
用の影響が排除できない恐れがある。アサーマルな作用
でなく、熱的な影響である可能性の検討も必要である。

この種の研究報告は、独立した研究機関による多方面
からの吟味によりしまいにその意義が明らかにされる。
現在は問題提起の段階であり、その報告を根拠に直ちに
健康影響の危険を強く主張することには飛躍がある。

6. 電磁界的リスク

専門機関の評価に従えば、熱作用と刺激作用を大筋の
基礎とする防護指針の範囲で、健康影響は十分に避ける
ことができる。それにも関わらず、防護指針値の数100
分の1以下の磁界での白血病のリスクの不安が
広がり、防護指針値の1000分の1以下の携帯電話の中
継塔からのマイクロ波に対して各地で建設反対運動が起
きている。

これらの不安に確かな根拠が無いことは前述のとおり
であり、しかし、あらゆる可能性に対して安全であるこ
とを証明する手だてがなく、リスクの存在を信じる人々
がいる限り、仮想的なリスクの存在を前提とした議論も
必要となる。ただし、そのリスクはあっただとしても非常に
小さい。このリスクが非常に大きなものであるかのように
の議論には科学的な根拠がないことに注意しなければな
らない。

7. す す び

電磁界的生体影響についての専門機関のコンセンサス
を紹介し、議論の対象となっている研究報告の問題点を
述べた。どのような研究報告も再現性や一貫性、科学的
な正当性について多方面からの吟味を経た上で確立した
ものと見なされる。現在の人体防護の考え方と取り入れら
ていない現象が、その過程にある。これらの中にはや
がて確立したものとして取り上げられる現象もあるかも
しれない。しかし、その理由によって大きなリスクの上昇
が明らかになることは考えにくい、冷静で科学的な対応が
望まれる。

参考文献
2) ICNIRP: Health Physics, 70 (1996) 587–593.
(1996年8月29日受理)