「童夢」F1 GP への挑戦

川 村 康 文 京都教育大学附属高校,
612 京都市伏見区深草関屋敷町

日本物理教育学会近畿支部「童夢」見学会に参加した。
我々人類が地球環境問題に遭遇して以来、自動車問題は
重要課題となっている。一例には、現在の自動車が化石
燃料をあたかももあたかも絶対に使っていることであ
る。もう一つは、走る桜鉄道と交差するように交通戦争
を引き起こしている点も見逃すわけにはいかない。

自動車レースでは、速く走るため少しでも車体もエン
ジンも軽く仕上げられなくてはならない。それでも耐
久性、つまり信頼性が求められ、燃費の向上も求められ
る。ドライバーの安全は絶対に重要であるが、ハンドリ
ング、ブレーキングの技術的信頼性が問われる。自動
車レースの中から生まれ、レースで成長され、やがて市
販車に適用される技術のシステムがこのようなにして存
在している。この技術のシステムは、前述した二つの問題
に答え始めた。

一つは、エンジンも省エネルギー化し、車体全体とし
ても省エネルギー化を実現してきたことである。童夢の
エンジニアは、自動車レースでは、車の軽量化、高
効率化が必要であるが、この面から環境問題に貢献でき
る。1回のレースでたった数十分のガソリンの数万倍のガソ
リンを節約できるようになる」と語っていたが、レース
で培われた技術が市販車に還元されている一例である。

もう一つは交通安全に関するで、ドライバー自身を
守ると同時に歩行者の安心、あるいはドライバーを守る
技術の開発である。同じく童夢のエンジニアは、「我々が作り
たい車は、きちんと走って、きちんと曲がって、きちんと
と止まる車である」と語った。このことを少しでも改善
されれば、現在生じている事故の何％かは削減できるか
も知れない。しかし、実際に自動車のハンドルを握るド
ライバーの運転への心構えは一番大切であり、無謀な運
転をせず、思いやりをもって（歩行者や他のドライバー
に対してだけでなく、地球に対しても）安全運転に心が
けることである。

さて見学をさせて頂いた「童夢」は、1975年に創立
された企業で、1978年に「童夢・レース」を発表し、そ
の後も独自にスポーツカーやレーシングカーなどの開発を
続けてきている。1979年にはル・マン24時間レース
に初挑戦し、それ以後国内耐久レース、全日本F3000
レースに参加し、ほぼすべてのレースで童夢製オリジナル
ルシャーシーを用いてきた。そして、よいが世界最高峰
のレースF1 GPへの参加目前という段階まで来た。最
近では、昨年の物理使いの対照の一つとして、高校生
の物理への興味・関心を高めるため、教科書の多くに
F1カーの写真がカラーの掲載がファジングとして注目され
るようになった。教科書編集の努力と熱情が感じられる。

見学会では、2台のフォーミュラ・日本の車と1台の
F1カーおよびNC加工室や空洞実験室（JR米原に設置
されているものの、童夢製である）を見学した。
フォーミュラ・日本の車のエンジンは、無限ボンダ
から供給されていた。1台目は、エンジンが下落して、車
のいろいろな部分をみせてもらうことができた。もう
1台は、エンジンが積まれたままの状態で車体の改良中
であった。この車に乗っていた中野信治選手は97年度
から「プロスト無限ボンダでF1にデビューすること
となった。」

以上のガレージには、童夢製のF1カーが置かれていた。童
夢のエンジニアの話では、もうほとんどF1で戦え
るだけの性能に達しているとの評価だった。かつて、エ
ンジンメーカーとしてボンダがF1で大活躍をしたが、い
よいよ車体も日本製のものがF1で活躍しようとして
いる。本当に感動的な場面に会うことができた。

最後に、以下に示したような内容が質疑応答で議論さ
れた。

Q. 高校生がこの分野への進路の可能性は？
A. 採用の基準は、やる気、創造性、物理のセンス、物
理的現象を数学でとらえる目をもっているかなどである。

Q. 人間がコントロールできるスピードとの兼ね合いは？
A. 自動車は、真っ直ぐに走るだけでなく、走って曲が
って止まなければならない。曲がる際の横Gに人間
は、5Gまで耐えられると思う。F3000のクラスで
3.5G、昨年のF1で4G、一般の公路なら1.5Gぐ
らい。

Q. F1のレース中の事故の理由にコンピュータ制御の
ミスがマスコミで報じられていたが、
A. コンピュータミスが減った。この分野の進化期は
速く、近年は電子制御が充実をきている。例として
は、ギヤブロック、セミオートマ・クラッチ、デファ
レンシャル、アクティブスベースーション、ABSなど

（1997年4月3日受領）