1. はじめに
回転系で現れる慣性力を学生が学ぶ場合、静止系との混乱を起こすことが多い。また、コリオリ力についてはなかなか実感しにくいことが理解を困難にしているように思わわれる。そこで、回転系に視点を固定した実験映像を見せ、学生の理解を助ける目的に簡単な実験装置を作製した。この装置による実験映像を用いて、本学の機械サイエンス学科1年生98名を対象に、映像を見ることによる理解の変化を調べた。調査では、まず質問に答えさせ、次に実験映像を見せた上で回答を訂正する機会を与えた。ただし、途中で解説はせず、学生が自ら推論を進めることをとった。

2. 実験装置と、実験映像に対する学生の反応
実験装置は直径約20cmの回転板上に玩具のRC（Remote Control）車で糸を取り付けた鉄球を固定し、回転の途中でRC車を操作し鉄球を解放することができるようにしたものである。鉄球を途中で解放したときの映像を図1（静止系）に示す。映像を動画とその静止合成画の両方を見た。図1の鉄球の動きは、約60%の学生がを正しく予想できた。

次に、図1の鉄球の運動を回転板の上で観察することにより見せるか、という質問に対する学生の回答を図2に示す。鉄球の動きを回答数に比例した長さの矢印で表し、正解の曲線を実線で示した。最も多かった回答は、回転板の中心から外側に向かって直線的に動いて見えるが、というもので全体の40%であった。遠心力が鉄球に作用して外側へ飛んでいく、という観念が強く働いてるそうに思われる。一方、正答はわずかに6%であり、頭の中で視点を変えることの難しさを表しているといえよう。

そこで、図3のように回転板の上にスタンドで小型のCCDカメラ（アールエフテクTINY-3）を取り付け、回転系に固定した視点からの映像を見せた。カメラはワイヤレスであり、回転軸の横に置いてある受信器からの映像をTVモニターで見せたり液晶プロジェクターを通してスクリーンに投影することもできる。従来の方法2よりでて簡便であり、リアルタイムで見せることができる点が特徴である。

図1 解放された鉄球の動き（静止系）
図2 学生が予想した鉄球の動き（回転系）
図3 回転板にCCDカメラを取り付けた様子

まず、図4（a）のように電工モールを利用したガイドを回転板に固定し、ガイドに沿って鉄球が運動する様
子を見せた。続いて、これを静止系で見た場合の映像を見せた（図4 (b)）。図4 (b) からわかるように、解放後の鉄球の軌道は直線である。次に、図1と図4 (b) を並べて示し、解放後の鉄球の動きを比べてその違いを意識させた。その後で学生が訂正した鉄球の動きを図5に示す。円板の中心から外側に向かって直線運動すると予想した者は減少し、正解の曲線（図中の実線）を描いた者が6％から28％に増加した。また、このとき回答を訂正した者は50％にのぼり、映像を見ることにより、学生が説明をする上にしっかりと足場が得られた様子がうかがえた。

これを見て、学生達はようやく理解したようである。この説明方法は簡単であるが、単独では十分な効果が得られず、実験映像と組み合わせることではじめて効果が得られると思われる。

4. おわりに

回転系の実験映像は学生に強い印象を与えたようである。回転系における鉄球の曲線的な動きは、回転板の中心から外側に向かう遠心力の作用だけでは説明がつかない。鉄球の進行方向に垂直に作用するもう一つの慣性力として、コリオリ力を登場させるのは、この段階にいたっては容易である。

静止系と回転系の視点を頭の中で切り換えることは大変難しい。その意味で、回転系に視点を固定したCCDカメラによる映像は、考える足場をしっかりとしたものにする効果があったといえる。実験映像を見てからの値が本来の50％にも達することが、これを裏付けているように思う。

引用文献
2）曾野武：物理教育 2-2 (1964) 46-56.
3）篠原省治：物理教育 11-2 (1963) 45-47.
6）Robert Ehrlich 「ひとりでに図る生産」丸善 (1996)。

（2004年9月25日受理）