新理科教育プログラム創造委員会の目指すこと（その2）
—新「物理II」の項目配列上の問題点と教育実践の在り方に関する研究—

小川 雅史 京都府立嵯峨野高等学校 616-8226 京都市右京区常盤段ノ上町15

昨年、物理教育学会近畿支部は新学習指導要領（新課程）の物理IIにおける選択分野の、大学入試における取り扱いに関して緊急避難的な提言を行った。その後それは、物理教育学会の提言となり、さらに広く全国の物理教育に関わる大学関係者にも周知されることとなった。提営後の活動として近畿支部はこれが提起した問題のより根本的な解決と、より望ましい物理教育の実現を目指して活動を開始した。すなわち、提営のための委員会を「新理科教育プログラム創造委員会」として発足させ、活動を行っている。ここでは私の考えも含めてその取り組みの一端を通報的に示すと共に、選択分野に関する教育上の問題点を整理し、その内容や、実用可能な指導計画、あるいはそのために利用できる教材や資料の開発などについて、平成16年度の物理教育研究集会全国大会での発表の要旨をもとに述べることとする。

1. はじめに
新学習指導要領では物理IIにおいて、選択的に履修することを可とする項目（以下「選択分野」という。）が設けられた。その選択の方法や配列の仕方の問題点については、各方面から多くの意見が寄せられている。その大半は、第3章と第4章の項目配列の問題点、選択を可とすることに対する危惧である。選択については、第3章を選択すれば高校では第4章の原子に関する単元を全く学ばなくなり、第4章を選択すれば第3章の熱力学に関する項目を学べず、大学教育にも支障があるのではないかというものである。つまり、いずれの場合も、選択である以上このような問題が生ずるのは当然である。付け加えるならば、第3章を選択して第4章の原子物理を原子物理学を学ばないことについては、大学の教員の間でも意見は分かれており、高等学部では力学と電気磁気学を化学で現代物理学は学ばなくても十分だという意見から、高校では現代物理学、特に原子物理学は是非学ぶべきだという意見までさまざまなである。一方高等学校の教員からは実際には3単位だと第3章を終えるのがやっとという現実の中でも、高校物理を学びえ少なくとも第4章の原子に関する分野は、扱うべきであるという意見は多い。第3章と第4章の項目の配列は以下の通りである。

第3章 物質と原子
ア 原子、分子の運動
（ア）物質の三態（イ）分子の運動と圧力
イ 原子、電子と物質の性質
（ア）原子と電子（イ）固体の性質と電子
第4章 原子と原子核
ア 原子の構造

（ア）粒子性と波動性（イ）量子論と原子の構造
イ 原子核と素粒子
（ア）原子核（イ）素粒子と宇宙

提営後、多くの大学は、その題目に添って、第3章（ア）の主体を出題範囲とするように公表している。（下図（1）、（2）参照）

図（1）
図（2）
2. 配列上の問題点

新指導要領の「物理Ⅱ」では、第3章の（イ）「原子電子と物質の性質」の学習に必要な基礎事項が第4章の（ア）「原子の構造」に含まれており、原子の構造を学ばないで、固体の性質と電子（バンド理論）を学ぶことになる。多くの教科書ではそうならないように編纂上の工夫がなされているが、そのために、同一の教科書（1）で2カ所に同じ記述が出てくるという変則的な状況になってしまう。

3. 新しい取り組み

（1）教育実践アンケート

高校における現代物理の扱いは、コア的な知識として学ぶ場合と古典物理を学習材料として利用する場合がある。今回の改訂で、選択分野として第4章を選んだ場合はコア的な知識として学ぶことになるが、その場合も量子論的な扱いができないから、旧課程の扱いと大きくは変わらない。第3章（イ）では固体のバンド理論を登場し、目新しさはあるが、定性的にして難しいものではない。また、高校の物理教員として初めて教えるような単元・教材も多く含まれているため、教育現場には不安感もある。

そこで、「物理Ⅱ」に含まれている現代物理の内容の教育について、先進的な実践例や指導案、実践プリント等について、できるだけ多くの高校教員に対して調査を行い実践例を収集する。また、「物理Ⅰ」「物理Ⅱ」を含めた指導の順序や取り扱い項目に関して物理教員への「教育実践アンケート」等を実施し、指導の指針を提示する。これは時に現代物理を教える必要があるのかというこちらについてコンセンサスを得るための基礎調査としても位置付ける。

この「教育実践アンケート」は物理教育学会近畿支部の活動の一環として実施する予定である。

（2）教材（学習資料コンテンツ）の開発

現代物理を少しでも教育の現場で教えたいという高校教員の中からは、限られた時間で効果的に教えるための新しい教材の開発が望まれている。生徒に自習課題として学ばせたいという場合もある。また、新課程の観点で現代物理を深めるため、高校教員には今までの知識や経験では対応できないこともある。それらを補うために教員が授業での生徒への提示する教材としてはもちろん、教員自身が研修に利用できる教材を開発することも望まれている。

以上の2つの観点から、近畿支部理科教育プログラム創造委員会ではプロジェクトとして、新しい教材（学習資料コンテンツ）の作成を行う。

この教材は、多くの教員や生徒に提供して活用されるようにするためにウェブ上のコンテンツとして公開することを目指している。この教材開発は高校教員と大学教員との連携によって実現する。言い換えれば新しい形態の高校連携である。教材の開発においては、種々のトピックを取り上げながら、その話題で「何を伝えたいのか（何を学ぶべきか）」をしっかりと捉え、各トピックの記述においては古典物理との関係について触れることにすることが必要であると考えている。内容によっては、生徒達に、物理ばかりでなく、広く科学・技術に対する関心をもたせるための素材や、現代社会に生きる者として是非とも知っておくべきコア的知識も含めることが必要だろう。また、「なぜ、高校の物理に現代物理の学習が必要なのか、その教育的価値は何か？」という問題意識も念頭に置きながら作成編纂を考えている。現在私が考えている章立ては、以下の通りである。

第1章「物質の根源を求めて」
第2章「エネルギーと放射線」
第3章「物性物理学の世界」
第4章「科学技術への応用」
第5章「物理学探究の方法」

実際に、各章のコンテンツ項目を決めに当たっては、「物理Ⅱ」の教科書をもとに、以下の言葉をキーワードとして編纂することを私は考えている。

電子、原子、原子核、定常状態、エネルギー準位、半導体、超伝導、超高圧、超低温、エネルギー・バンド、光電効果、X線、プラックの反射、コンプトン効果、物質波、ポーラ理論、スペクトル、量子論、相対論、不確定性原理、放射能、放射性崩壊、原子核、核融合、核分裂、素粒子、原子論、クォーク、レプトン、ハドロン、ニュートリノ、バリオン、核力、ファミリ粒子、光子の交換、バリリ

4. 最後に

まだまだ、今の段階では教材化を図るための検討段階である。しかし、時間がたつのは早いもので、平成17年4月からはいよいよ新課程の物理Ⅱがはじまる。物理Ⅱの選択分野へ授業が進むこととこの教材作りは追い詰めることである。本論文で示したビジョンをもとに今後、これらの取り組みを進めていきたいと考えている。

引用文献

1) 文部省検定教科書：物理Ⅰ、物理Ⅱ（数研出版）。