超音波を用いたビデオ教材の開発
一ホイヘンスの原理に基づいた波動の集束－

加納 康裕 a, 清水 健人 a, 江口 悠介 b
筒井 和幸 c, 本管 正嗣 d, 淺川 誠 e, 鈴木 直 f, 山本 健 g
関西大学システム理工学部物理・応用物理学科，高槻市立第二中学校，
大阪教育大学附属高等学校池田校舎
K380971@kansai-u.ac.jp

1. はじめに
高等学校において，波動の性質を実験的かつ視覚的に学習するために，水波投射装置を用いることがある．水波投射装置は様々な改良が施されてきたが，液体表面波を用いているために様々な実験的制約が生じてしまう．一方，コンピュータシミュレーションを用いた教材は，理解を補助するものとして非常に効果的である．しかし，現実に生じた物理現象を伝えることにより，学生の科学への探究心の向上に期待したい．我々は，水中の超音波を光学的に可視化することにより，そのスローモーション動画を波動分野の学習用教材として利用している[1]．今回，凹面鏡による波動の集中現象の理解を視覚的に補助するための教材を開発したので報告する．ホイヘンスの原理に基づいて波動の集束を理解できる動画である．

2. 超音波の光学的可視化
超音波を可視化するためには，適切な音響光学効果を用いる必要がある．超音波の周波数やビーム径，光の波長によって，様々な手法が提案されている．比較的低周波である1 MHz程度の超音波の可視化には，波面まで認識できる Fresnel 法を用いている[2]．数 MHz 以上では，Raman-Nath 回折や Bragg 反射等を用いた Schlieren 法が効果的である[3]。この手法は，波面を確認することができないが，超音波の伝搬を波面として理解することができる．光源には，短時間発光可能な Xe フラッシュランプを用い，発光及び超音波励起の同期をとることにより，任意の時間の静止画やスローモーションビデオの撮影が可能となる．本報告では，波動の集中現象の理解を補助するための教材を作成するため，超音波波面の観察が可能な Fresnel 法を用いた[4]．

3. 可視化結果
Fig. 1 は Fresnel 法によって可視化した周波数 1 MHzの超音波パルスを示す．半径 30 mm の円板型超音波振動子を画面上部に設置し，画面下部に凹面鏡の役割を果たす反射面に沿って直径 3 mm，長さ 60 mm のステンレス円柱 6 本を設置した．円柱は，素元波を生発させるために使用した．(a) は超音波振動子から出射された平面超音波が，画面下部のステンレス円柱に向かって伝搬しているところである．ステンレス円柱で反射した平面超音波が半径の異なる円筒波（素元波）として伝搬し，それらの干涉波が反射波の波面を構成していく．この様子を捉えたものが(b)である．動画においては，発生した円筒波の包絡線が徐々に集束していく様子をスローモーションで観察できる．(c)は円筒波の包絡線が一点に集束した様子である．これらの連続した静止画から，凹面鏡に並ぶ波源（ステンレス円柱）から発生する素元波が球面波（円筒波）となってできる球面波(円筒群)の像である。
かる。現実には、約 1500 m/s の位相速度で水中を伝搬する超音波であるが、ビデオ教材では、10 s かけたスローモーション動画として観察することができる。

4. まとめ

Fresnel 法を用いて超音波を可視化し、ホイヘンスの原理に基づいた凹面鏡による波動の集束現象の学習用教材を作成した。周波数 1 MHz の超音波を、反射面に沿って置かれた複数のステンレス円柱に入射した。すると、超音波がステンレス円柱で反射し、それぞれ半径の異なる円形波を発生させる。そして、それらの包絡線が徐々に集束していき、やがては一点に集束することを理解することができる。本ビデオ教材は、教職を目指す学生が教育現場で実際に使用するために作成した。

参考文献


Fig. 1 Focusing of ultrasonic based on the Huygens principle.