小惑星イトカワの塵から何がわかったか？--はやぶさとイトカワ--

九州大学 野口高明
E-mail: tnomichi@artsci.kyushu-u.ac.jp

1. はじめに
2010年6月に宇宙航空研究開発機構(JAXA)のはやぶさ探査機（MUSES-C）が、小惑星イトカワの試料を地球に持ち帰った。著者は、JAXAキュレーションチームの一員として、イトカワ試料の探索・発見・収集・分類に関わり、さらに、2011年1月から開始されたイトカワ試料初期分析においては、透過電子顕微鏡(TEM)および走査透過電子顕微鏡(STEM)を用いてイトカワの物質のごく表面の変化（宇宙風化；後述）を研究した。現在も宇宙風化の機構について研究を行っている。

著者の研究を述べる前に、小惑星を研究する意義について説明したい。小惑星とは、火星と木星の軌道の間に存在する、直径1km未満から約1000kmの大きさの多数の天体の総称である。小惑星は、大きな重力を持つ木星の影響により、小惑星の元となった天体の軌道が擾乱され互いに高速衝突することで形成された破片や、破片が重力的に再集積したものである。小惑星は、地質学的な活動を太陽系の初期に終了した化石のようなものである。

小惑星の一部には、地球の軌道と交差する楕円軌道を持つ近地球型小惑星というものがある。小惑星は反射スペクトルの特徴、色、アレベド（反射能）などによって分類できる。近地球型小惑星には、反射スペクトルにFe²⁺による吸収バンドが見られるS型（S type）小惑星が多く、イトカワもその一つである。隕石の一部で覆元できている地球に衝突する前の軌道は、近地球型小惑星とよく似ている。隕石の中々でS型隕石が多く見られる。S型隕石の母体は普通コンドライト（H、L、LL）に細分される）であるため、普通コンドライト隕石はS型小惑星起源と考えられてきた。

初期分析では、イトカワ粒子（平均径30から150μm）は、LLコンドライトとほぼ同じ化学組成・酸素同位体組成を持つことが判明した[1, 2, 3]。しかし、LLコンドライト隕石の反射スペクトルはイトカワ（S型小惑星）のものと一致しない。イトカワの物質のごく表面にはスペクトル形状を変化させる物質が存在するはずであり、これが実際どのようにあるかを調べることが私の研究テーマであった。月の岩石を粉砕したもののは反射スペクトルを測定すると、月の表面物質の反射スペクトルと異なることが知られており、これを宇宙風化とよぶ。月の場合、微小隕石の衝突によって蒸発した物質が試料表面を極薄く（100nm）コーティングしており、そのコーティング層中のナノ金属鉄がスペクトル形状を変化させている。

2. イトカワ粒子の宇宙風化
初期分析ではイトカワ粒子の超薄切片（厚さ100nmの断面試料）をウルトラミクロトームおよび集束イオンビーム加工装置を使って切り出し、極表面付近の微細構造を透過電子顕微鏡で観察・分析した。その結果、Fe, Mg, Sに富むナノ粒子が存在する層と、ナノ金属鉄粒子が存在する層の2層構造があることを見出した[4]。更に観察を進めた結果、3種類の宇宙風化層を識別し
た[5]。すなわち、下地の結晶に含まれない元素を含む再凝縮層(Zone 1: 厚さ 2-15 nm)，部分的に結晶構造が非晶質化している層(Zone 2: 厚さ 30-60 nm)の2種類の基本構造があり，Zone 1 のみからなる Redeposition rim, Zone 1 の下部に Zone 2 がある Composite rim, Zone 1 と Zone 2からなるが Zone 2 の上部が火ぶくれ状に膨らんだ構造を持つ Composite vesicular rim の3種類である。特に，火ぶくれ状構造は，Radiation blistering に非常によく似た形状を持つため，低エネルギーのプラズマ流である太陽風照射によって形成されたプリスタリングであると解釈した。

図1 イトカワ粒子の表面に見出された3種類の宇宙風化層 HAADF-STEM 像と対応する模式図[5を日本語化]

宇宙風化層を持つイトカワ試料では，高エネルギー太陽風（フレアやCMEイベントで放出される特にエネルギーの高い太陽風）によって鉱物中に形成された傷であるソーラープレアトラックが 10^9-10^{10} 本/cm²観察された。このトラック数密度は数千年の照射時間に相当する。これらの観察結果は，イトカワの場合数千程度太陽風に照射されることで，鉱物の極表面が変化したものと解釈できる。この研究以降，イトカワ粒子の宇宙風化についての研究が行われるようになったが，大筋では同じような結論が得られている[6, 7, 8]。

3. 終わりに
イトカワから持ち帰られた粒子のごく表面は，太陽風の影響を受けて変化していることが明らかになった。宇宙風化を引き起こす2つの主要原因である太陽風照射と微細隕石衝突の影響のうちで前者を研究するのに，イトカワ粒子は非常に適した試料なのである。

参考文献