Economy of Tokamak Neutron Source for Transmutation of Transuranics

Ryosuke SAKAI, Takaaki FUJITA and Atsushi OKAMOTO
Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
(Received 18 March 2018 / Accepted 11 November 2018)

This paper evaluates the economy of a tokamak neutron source for transuranics transmutation using the Physics-Engineering-Cost system code. We compared two devices, one with normal conductive coil (NCC) and another with superconducting coil (SCC). The plasma performance was assumed to be moderate ones. The cost of neutron (CON) was used to measure the economy, taking into account the selling net electricity (P_{e-net}). We scanned the plasma aspect ratio (A) and thickness of inboard-side shield of an NCC device. It was revealed that ohmic loss in the magnetic coils (P_{coil}) is the dominant factor on determining the optimum aspect ratio for the economy of an NCC device. On the other hand, in an SCC device, the dependence of CON on the aspect ratio is relatively weak due to the absence of P_{coil} and smaller weight of the coils. Moreover, as the inboard-side shield of an NCC device became thicker, the economy of the device became worse. It was found that enough plant availability in SCC settings, which presupposes development of a remote-handling system, results in the relatively higher economic potential of SCC settings than of NCC settings.

© 2019 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: neutron source, transuranic, aspect ratio, normal conductive coil, superconducting coil, circulating power, cost

DOI: 10.1585/pfr.14.1405040

1. Introduction

Long-lived transuranic (TRU) wastes produced by nuclear fission power plants are known as radioactive and biohazard materials. At present, these biohazardous nuclear wastes are being buried deep under the ground (deep geological disposal); however, lands, where these wastes of a million-year half-life can be contained safely, are limited.

Transmutation as another method of disposal has attracted the attention of research enthusiasts. In this process, the long-lived nuclei are converted into nuclei with shorter half-life by fast neutrons, during fission or neutron capture reaction. The current schemes of nuclear waste transmutation include the accelerator-driven subcritical reactor (ADS), fission reactor (FR), and fast breeder reactor (FBR). ADS has no risks of serious accidents such as meltdown; however, it has relatively low fast neutron flux and large device size. In contrast, FR and the FBR have relatively high neutron flux and smaller sizes, and exhibit higher risks of serious accidents; furthermore, they consume fast neutrons for themselves to maintain chain reactions, leading to low transmutation efficiency.

In contrast, fusion reactors can irradiate high flux fast neutrons by deuterium and tritium fusion reaction. Fusion reactors have relatively low risks because of their difficulty in maintaining fusion reaction and have a size relatively smaller than the ADS [1]. These reactors have the potential to supply plenty of fast neutrons for transmutation, at low costs.

M. Kotcheunreuther et al. [2] proposed the fusion–fission transmutation system by compact fusion neutron source (CFNS) with normal conductive coil (NCC), a system based on a fusion–fission hybrid reactor where fast neutrons strongly augment the rate of nuclear reactions in a surrounding subcritical fission blanket fueled by transuranics. On the other hand, W.M. Stacey et al. [3] proposed the Subcritical Advanced Burner Reactor (SABR), a tokamak-type fusion reactor with superconducting coil (SCC). Plasma configuration such as plasma aspect ratio A is fixed in both CFNS and SABR.

The economics of tokamak fusion neutron source for transmutation of TRU has been rarely studied. We studied the A dependence of the cost of the neutron source with NCC and found that the minimum cost per neutron is approximately $A \sim 2.2$ [4]. The optimum A is mainly determined by the electric power of field coils, and though it depends on the thickness of the inboard-side shield, it was not scanned in [4].

In this study, we have scanned the thickness of the inboard-side shield of NCC settings and compared the neutron sources with NCC and SCC. The NCC consumes electric power (ohmic loss). However, since the NCCs can be disassembled if they have a small number of turns, maintenance and replacement of in-vessel components are relatively easy. Tokamak designs with demountable NCCs offer a very attractive option for the device in which rapid replacement is essential [5]. However, the

author’s e-mail: sakai-ryosuke15@ees.nagoya-u.ac.jp
lifetime of the Center Post (CP) can be a dominant factor for plant availability of NCC devices. In the ARIES–ST, which has NCC, the lifetime of CP was estimated three years for an average neutron wall load of 4.10 MWm$^{-2}$ and inboard shield thickness (t_{sh}) of approximately 0.26 m [6, 7]. In this study, the average neutron wall load is only 0.60 MWm$^{-2}$, the t_{sh} of NCC is 0.26 m for the standard value, and the burn cycle of SABR is 750 days [3], which is less than three years. Thus, the CP lifetime will be sufficiently longer than the burn cycle of “Fission Fuel Region” (FFR) discussed here, and then the duration of continuous operation will be determined by replacement of the blanket modules, divertor assemblies, and shields, in both NCC devices and SCC devices. In SCC devices, the development of a complicated remote-handling system for maintenance and replacement of in-vessel components is imperative, since the SCCs cannot be disassembled. The work will be more difficult and time-consuming, even with the remote-handling system, than in NCC devices because the SCC devices tend to be larger as will be shown in the subsequent sections. Furthermore, the duration for cooling down the SCCs, which is typically one month, is also necessary before tokamak operation after maintenance, though warming up the SCCs before maintenance might be done while waiting for the reduction of decay heat in activated components. From these two reasons, the maintenance period between operations will be shorter, and hence, higher availability is expected in NCC devices than in SCC devices. On the other hand, because there is no ohmic loss in SCCs, their electric power consumption will be smaller than in NCC devices. The tradeoff between availability and electric power consumption in NCC and SCC devices is one of the subjects of this paper.

The design parameters and the cost were evaluated by the PEC (Physics-Engineering-Cost) system code [8].

2. Models and Conditions for Analysis

2.1 Geometric configuration and coil model

The schematic device in this study and its radial build are shown in Figs. 1 and 2, respectively. The structure of the blanket, including the FFR, is basically the same as assumed in SABR [3], which is described in detail in the next subsection. In an NCC device, as shown in Figs. 1 (a) and 2 (a), the CP and the outer toroidal field coils connected to it generate the toroidal fields. It is assumed that the connection between the CP and the coils can be disassembled for maintenance, like the CTF concept [9]. The CP is assumed to fill the whole available space in the central region inside the shield or the vacuum vessel to minimize the ohmic loss. The radius of CP, R_{CP}, is determined by:

$$R_{CP} = (1 - 1/A)R_P - \Delta_{in} - t_{sh},$$

where R_P is the plasma major radius, Δ_{in} is the gap between the plasma surface and the inner first wall (FW), and t_{sh} is the thickness of the inner shield and the FW. We did not consider the limit of current density and the magnetic field strength inside the CP, and hence, we have no lower limit, by electromagnetic condition, of A in an NCC device.

In contrast, in an SCC device, as shown in Figs. 1 (b) and 2 (b), conventional TF coils are assumed. The cross-sectional area of the TF coils, S_{TF}, is determined by the fixed current density limit (20.3 MAm$^{-2}$ [10]) and the required coil current. The structure of the blanket including the fission core is basically the same as that in SABR [3].
TF thickness of SCC, t_{TF}, is determined by

$$t_{TF} = R_{\text{min}} - \sqrt{R_{\text{min}}^2 - S_{TF}/\pi},$$

where R_{min} is the distance from the center of torus to the inner (plasma side) surface of inboard TF coils at the equatorial plane. t_{sh} is the thickness of the inboard shield.

Therefore, as shown in Fig. 1, we have a space in the central region of the device inside the inboard TF coils of the SCC devices so that in general, they are thinner than those in NCC. We assumed that the critical magnetic field of SCC is 11.8 T [10]. The lower limit of A in an SCC device is determined by the condition that the whole central space is used for the inboard TF coils, or that the maximum field reaches the critical value. The ohmic coil for the inductive current drive is not equipped. We assumed that the plasma current is ramped up by a neutral beam current drive. The poloidal field coils are counted for cost and electricity consumption (ohmic loss) in an SCC device, and for the cost in an SCC device, though their positions have not been decided. We also fixed the t_{sh} to 0.675 m in an SCC device, which corresponds to the thickness of the inboard shield of SABR [3]. In an NCC device, the standard value of t_{sh} is 0.26 m, which corresponds to that in the ARIES–ST design [7] and the same as used in [4], is scanned around it.

2.2 Blanket models

In the SABR blanket design, the thermal power output was fixed to 3 GW and the fusion power was increased from 100 to 180 MW during the fuel cycle [3]. The TRU fuel, composed of 40%Zr–10%Am–10%Np–40%Pu, was contained in the FFR on the outboard-side [3]. The tritium breeding was planned in the upper and lower blankets, and in the outer blanket of FFR that contains Li$_2$SiO$_4$ [3]. We did not calculate the neutron transport or nuclear reactions but referred to the SABR blanket design. In our previous study [4], it was assumed that the same performance on transmutation of TRUs and the same fission power would be achieved with the same outer FW area and the same fusion power. However, the fusion neutrons that directly enter the FFR mainly determine the performance on the transmutation of TRUs and the fission power. Thus, in our previous study [4], the same area of the outer first wall did not necessarily result in the same FFR area, because we have an area for other purposes including the divertor removal space. We have also assumed a D-shape blanket while the fission-core is cylindrical [4]. Therefore, in this study, we assumed a cylindrical design such as the SABR [3], as shown in Figs. 1 and 2, and fixed the FW surface area in front of FFR, the volume of FFR, and the fusion neutron power applied for the FW surface in front of FFR to those used in SABR [3]. Namely, we fixed the FW surface area in front of FFR, S_{FW}, to 62.4 m2 and the volume of FFR to 41.4 m3, fixed by the thickness of the outboard blanket, where the area and the volume for the gas plenum are excluded. This value of S_{FW} determines the device size, including plasma major radius for each A, under the assumptions stated below. The ratio of the length of FFR to the total length of the fission core (fuel pin) and also to the height of the outer (and inner) FW, are fixed to those used in SABR. The former implies that the height of the gas plenum should be half that of FFR as in SABR [3]. The latter is achieved by assuming that the ratio of the height of components contained in the outer blanket, other than the fission core, namely, structural material, TBR blanket, and reflector, to the total height of the FW is the same as that in SABR. The thickness of the outer blanket is almost the same as that in SABR. The elevation views of the tokamak with Fission Core for an NCC device with $A = 1.625$ and for an SCC device with $A = 3.5$ are shown in Fig. 3.

The fusion power required is determined assuming that fusion neutrons are uniformly distributed on the total FW area. Namely, in PEC, the fusion power P_{fus} is determined so that P_{fus}/S_{FW} is $\rho_{SABR} S_{SABR}/S_{FW} = 39.1$ MW. Here S_{FW} is the total first wall area in PEC, and S_{SABR}, the total FW area in SABR, is 289 m2. Conse-
Fig. 3 Elevation views of the tokamak with Fission Core for both (a) minimum A for NCC and (b) maximum A for SCC. The total thickness of the outer blanket and the thickness of FFR are 0.947 m and 0.972 m, respectively. The thickness of FW, which does not include the thickness of FFR, are 0.602 m and 0.619 m. The thickness of the FW are 0.034 m and 0.035 m.

2.3 Plasma models

The plasma aspect ratio A dependence of plasma elongation κ [11], and the dependence on A and κ of the normalized plasma beta β_N [12], are assumed as

$$\kappa = \frac{1.1996}{A^2} + \frac{0.4041}{A} + 1.5322,$$

$$\beta_N = \frac{1}{f_{\text{peak}}} \left[\frac{3.09}{A} + \frac{3.35}{A^{0.5}} \right]^{0.5} \left(\kappa \right)^{0.5},$$

where f_{peak} denotes the peaking factor of the plasma pressure. The formula for κ used in this study, Eq. (3), is different with that in our previous study [4] that was based on [12]. The present formula has lower κ in $1.0 < A < -4.5$. The formula for β_N is fitted by a simpler function of A for simplicity [4],

$$\beta_N = \beta_{N0} \left(\frac{3}{A} \right)^{0.39} \left(\kappa \right)^{0.5},$$

where β_{N0} is an input parameter and fixed at 3 in this study. The density n and temperature T profiles in plasma are shown as below,

$$n(\rho) = n_0 (1 - \rho^2)^{\frac{1}{2}},$$

$$T(\rho) = T_0 (1 - \rho^2)^{\frac{1}{2}},$$

where ρ is the normalized minor radius. In this study, we fixed a_0 and a_t to 0.25 and 1.0, respectively, and assumed $T_0 = 15$ keV. The density is determined by β_N and the magnetic field of toroidal coil, B_{max}. We also assumed that $q^* \geq 2.5$ and $q_{95} \geq 3$, considering the operation regimes of ST ($q^* \geq 2.5$) [13] and of the conventional tokamak ($q_{95} \geq 3$). The relation of q^* and q_{95} is shown as

$$\frac{q_{95}}{q^*} = \frac{1.17 - 0.65A^{-1}}{(1 - A^{-2})^2}.$$

The ratio q_{95}/q^* is 1.2 at $A = 3.0$, and decreases with A. Hence, the lower limit of the safety factor is determined by $q^* \geq 2.5$, in $A \leq 3.0$, and by $q_{95} \geq 3$ in $A \geq 3.0$.

Figure 4 shows the dependence of κ, β_N, q^*, q_{95}, and R_p on A for the fixed \mathcal{S}_{FFR}.

We assumed deuterium neutral beam (NB) injection for heating and current drive (CD), with the beam energy at 200 keV for quasi-perpendicular injection for heating, and at 800 keV for co-tangential injection for CD. The beam-thermal fusion power is considered in this study. We fixed the CD efficiency and the gain for beam-thermal fusion to $\eta_{\text{CD}} = 0.2 \times 10^{20}$ AW$^{-1}$ m$^{-2}$, $Q_{\text{BD}} = 0.25$ for CD NB, and $Q_{\text{BD}} = 0.5$ for heating NB.

We took standard ITER H-mode scaling [9] for energy confinement times $\tau_E.$ The formula here is

$$\tau_E = \frac{0.0562 M^{0.19} I^{0.03} R^{1.97} B_t^{0.15} \rho_{19}^{0.78} \rho_{19}^{0.41}}{A^{0.5} [f_{\text{H-mode}} P_a + P_{\text{aux}} + P_{\text{CD}}]^{0.69}},$$

where M, I, R, and B_t denote the mass, current, major radius, and toroidal field, respectively. ρ_{19} denotes the density in 19 times the critical density. $f_{\text{H-mode}} P_a$ and P_{aux} denote the auxiliary power and the net power for heating and current drive. P_{CD} denotes the power for co-tangential injection for CD.
where H_{0y2}, M, I_P, B_T, and \bar{n}_{10} represents the enhancement factor (in this study, $H_{0y2} = 1.0$), the average plasma ion mass number (because we took deuterium and tritium fusion reaction, $M = 2.5$), the plasma currents in MA, the toroidal field at the plasma center in T, and the line average electron density in 10^{19} m$^{-3}$, respectively. The expression $f_{\text{alpconf}}P_\alpha + P_{\text{aux}} + P_{\text{CD}}$ corresponds to the input power for fusion plasma, and f_{alpconf}, P_α, P_{aux}, and P_{CD} denote confinement factor of α particles (assumed to be 98%), α particle heating power in MW, quasi-perpendicular NB power in MW, and co-tangential injection NB power in MW, respectively.

The calculation flow chart of PEC code used herein is shown in Fig. 5. First, R_P is determined so that FFR surface area, $S_{\text{FFR}} = 62.4$ m2, at each input A. Then, B_{max} is adjusted to regulate the toroidal field B_T to suffice $P_{\text{fus}}(S_{\text{FFR}}/S_{\text{FW}}) = 39.1$ MW. The procedure to calculate P_{fus} with B_T is as follows. We assumed that the safety factor is the lowest value ($q^* = 2.5$ in $A \leq 3.0$ or $q_{95} = 3$ in $A \geq 3.0$), and that the plasma current I_P is determined by B_T. As β_N is determined by A in Eq. (5), the plasma pressure is obtained. The density profile is then determined based on the electron density profile. These two profiles are then used to calculate thermal fusion power. The total NB power and CD NB power are determined by energy confinement time given by Eq. (9) and by the given CD efficiency, respectively. If the CD NB power exceeds the total NB power, we increased the safety factor. The beam-thermal fusion power is calculated with obtained NB powers and the given Q_{b-th}. Finally, P_{fus} is obtained by summing thermal and beam-thermal fusion power.

2.4 Power balance

Figure 6 illustrates the energy flow of fusion neutron source. The thermal power generated in the blanket comes from the power produced in the FFR by fission of TRUs. We fixed the thermal power P_{th} to 3 GW (thermal) and the gross electricity $P_{e-gross}$ to 1049 MW (electric) in reference to the SABR design [3]. $P_{e-recirc}$, P_{e-net}, and P_{coil} represent the circulating power, the net electricity, and the power consumption in the coils (ohmic loss), respectively. In an SCC device, $P_{e-recirc}$ is assumed as zero. On the other hand, f_{plant}, f_{aux}, and f_{CD} represent the ratio of the power for the
subsystems to the gross electricity, the efficiency of heating NB, and the efficiency of CD NB, respectively. The subsystem includes the coolant system, vacuum-pumping system, and the refrigerator system for cooling down the superconducting coils in an SCC device. The relations of these powers are shown below. We assumed that f_{plant} is 0.05 in both the SCC and NCC settings, as is the case of water cooling in reference [14], wherein 0.01 is for the primary-loop pumping power and 0.04 for the auxiliary functions. As the refrigerator power would be quite lower compared to $P_{\text{e-gross}}$ in a device considered here with the major radius of \sim3 m, the difference in f_{plant} between SCC and NCC settings is neglected.

$$P_{\text{e-net}} = P_{\text{e-gross}} - P_{\text{e-recirc}},$$ \hfill (10)

$$P_{\text{e-recirc}} = \frac{P_{\text{CD}}}{f_{\text{CD}}} + \frac{P_{\text{aux}}}{f_{\text{aux}}} + f_{\text{plant}}P_{\text{e-gross}} + P_{\text{coil}}.$$ \hfill (11)

2.5 Cost analysis

Because the primary objective of the device is to produce neutrons and not to generate electricity, the ‘cost of neutron’ (CON) was used for the evaluation of economy:

$$\text{CON} = \frac{\text{Annual cost [\$] - Annual income [\$]}}{\text{Annually neutron energy applied for FFR [kWh]}}.$$ \hfill (12)

Note that this is not the same as in our previous study [4], where the denominator was the total annual neutron energy. The denominator in Eq. (12) is smaller than the total annual neutron energy by a factor of $S_{\text{FFR}}/S_{\text{FW}}$.

The income by selling electricity at the market price is subtracted from the total cost to evaluate the net cost. The market price was determined by consumer price index (CPI) and the exchange rate. First, we referred to the annually averaged market price of power selling, 9.87 2013 ¥/kWh, of a Japanese power company in the 2013 fiscal year. We converted the unit of yen to the unit of the dollar using the exchange rate, 100.35 ¥/$, in the same year. Finally, we converted the unit of 2013 $/kWh to 2003 $/kWh, which is the unit of CON, using the 2003 CPI, 183.96, and the 2013 CPI, 232.96. Thus, we estimated the unit price of power selling at 77.7 2003 mill $/kWh (1 mill is 0.001 $).

The annual cost is composed of total capital cost, operation and maintenance cost, replacement cost, fuel cost, and decomposition cost. Evaluation of these costs is based on the existing engineering and cost models in PEC. The mostly used cost evaluation is referred to [14], but we used the cost of the primary loop with Li coolant in [14] as the cost of the primary loop with Na coolant assumed in this study, as in SABR. The cost of primary loop was approximately 6.5% of the total capital cost. Here, we considered the fact that Na is cheaper than Li. We also assumed the operation period to be 30 years, plant availability (f_{avail}) of NCC settings at 75%, which is the same value for ARIES-ST [6], and SCC settings at 60% of the standard values, which comes from the report that SABR can burn the TRU discharged annually from three 1000-MW (electric) fission plants if f_{avail} of SABR is 60% [3], and is scanned around it.

3. Scan in NCC Settings

The plasma and engineering parameters and economy have been evaluated by PEC in the range between $A = 1.625$ and 3 for NCC settings, at intervals of 0.125. The plasma size (major radius, minor radius, and elongation) is determined for each aspect ratio to satisfy the fixed area of FFR. We scanned some parameters, beginning with A.

3.1 A dependence in NCC settings

We scanned A in NCC settings, with the standard t_{sh} of 0.26 m. The results of CON, CON Capital, and CON Income are shown in Fig. 7. Here, the CON Capital and CON Income are defined by Eqs. (13) and (14).

$$\text{CON Capital} = \frac{\text{Annual capital cost [\$]}}{\text{Annually neutron energy applied for FFR [kWh]}}.$$ \hfill (13)

$$\text{CON Income} = \frac{\text{Annual income [\$]}}{\text{Annually neutron energy applied for FFR [kWh]}}.$$ \hfill (14)

We could observe that CON Income increases with A for nearly $A \leq 2.125$, then it decreases approximately at $A > 2.125$. On the other hand, the CON Capital increases with A constantly. The CON has the minimum at roughly $A = 2.0$. The economical optimal condition is

![Fig. 7 CON, CON Capital, and CON Income as functions of A in NCC settings, with the standard tsh. At approximately A = 2.0, the value of CON becomes the minimum.](image)
located around this point.

The results of the reactor cost and \(R_P \) are shown in Fig. 8. Here, the reactor cost and \(R_P \) increases with \(A \). \(R_P \) is a measure of the reactor size, so that the reactor cost increases with \(R_P \).

The results of \(P_{e-gross} \), \(P_{e-recirc} \), \(P_{coil} \), \(P_{e-recirc} - P_{coil} \), and \(P_{e-net} \) are shown in Fig. 9. We fixed \(P_{e-gross} \) to 1049 MW (electric). \(P_{e-recirc} \) decreases with \(A \) for \(A \leq 2.125 \), then increases for \(A > 2.125 \). Hence, \(P_{e-net} \), the difference between \(P_{e-gross} \) and \(P_{e-recirc} \), also increases with \(A \) for \(A \leq 2.125 \), then decreases for \(A > 2.125 \). \(P_{coil} \) has similar dependence on \(A \), to that of \(P_{e-recirc} \). \(P_{e-recirc} \) and \(P_{coil} \) have a minimum at approximately \(A = 2.125 \). The dependence of \(P_{e-recirc} - P_{coil} \) on \(A \), which shows the circulating power, except \(P_{coil} \), is weaker than that of \(P_{coil} \). Thus, the dependence of \(P_{coil} \) on \(A \) is a dominant factor in determining those of \(P_{e-recirc} \), \(P_{e-net} \), and \(\text{CON}_{\text{income}} \) in the NCC device, as is discussed in the previous study [4].

The dependence of \(P_{coil} \) on \(A \) can be understood as follows. Because the resistivity of the coil is inversely proportional to its cross-sectional area \(S_{coil} \), we have \(P_{coil} \propto I_{\text{coil}}^2/S_{coil} \), where \(I_{\text{coil}} \) is the coil current. From Ampere’s law, we have \(I_{\text{coil}} \propto R_P T \). As shown in the NCC settings in Fig. 1 (a), \(S_{coil} \) can be regarded as the cross-sectional area of \(CP \). As a result, we have \(P_{coil} \propto R_P^2 B_T^2 \). The results of \(R_P^2 \), \(B_T^2 \), and \(1/R_P^2 \) are plotted as functions of \(A \) in Fig. 10. Note that \(1/R_P^2 \) increases sharply with the decrease in \(A \) for \(A \leq 2.0 \) because of small space for \(CP \); it decreases gradually with \(A \) for \(A > 2.0 \); \(R_P^2 \) and \(B_T^2 \) increase constantly with \(A \).

The results of \(P_{\text{fus}}, S_{FW}, \langle n_e \rangle \), and \(\beta_T \) are shown in Fig. 11, where \(\langle n_e \rangle \) and \(\beta_T \) are the average electron density and toroidal beta, respectively. We could see that \(S_{FW} \) increases with \(A \), because of the dependence of \(R_P \) in \(A \), as shown in Fig. 8. Moreover, \(P_{\text{fus}} \) increases with \(A \) in order to fix \(P_{\text{fus}} S_{FW} / S_{FW} \) as \(S_{FFR}/S_{FW} \) decreases with \(A \); \(\langle n_e \rangle \) also increases with \(A \) because of \(P_{\text{fus}} \propto \langle n_e \rangle^2 \langle T_e \rangle^2 \), where \(\langle T_e \rangle \) is the average electron temperature and is fixed (Eq. (7) and Sec. 2.3); \(\beta_T \) decreases with \(A \) because of
\[\beta_T = \beta_N I_p/(a_P B_T) \]

where \(a_P \) is the plasma minor radius, \(\beta_N \) decreases with \(A \) as shown in Eq. (5) and Fig. 4, and \(I_p/(a_P B_T) \) also decreases with \(A \) for a fixed safety factor. As a result, \(B_T^2 \) increases with increasing \(A \) because of \(B_T^2 \propto \langle n_e \rangle/\beta_T \).

Consequently, CON_income decreases with the decrease in \(A \) for \(A \leq 2.125 \), because of increase in \(P_{\text{coil}} \) caused by the lack of CP space, while it decreases with \(A \) for \(A > 2.125 \), because of increase in \(I_{\text{coil}} \) caused by increasing required \(P_{\text{fus}} \) and decreasing \(\beta_T \). As a result, CON_income has the maximum at approximately \(A = 2.125 \).

3.2 Scanning \(t_{\text{sh}} \) in NCC settings

In the previous section, \(P_{\text{coil}} \) had a large impact on CON while the minimum \(P_{\text{coil}} \) was mainly determined by \(1/R_{\text{CP}}^2 \). As shown in Fig. 12, at fixed \(A \) and \(R_p \), the CP radius, \(R_{\text{CP}} \), becomes smaller as the thickness of the inboard shield (\(t_{\text{sh}} \)) becomes larger. Thus, \(1/R_{\text{CP}}^2 \) becomes larger, while \(B_T \) is independent of \(t_{\text{sh}} \) at a fixed \(A \) because \(P_{\text{fus}} \) and \(S_{\text{FFR}} \) are independent of \(t_{\text{sh}} \) at a fixed \(A \). This will enhance the \(P_{\text{coil}} \) and the CON. In an NCC device, \(t_{\text{sh}} \) can be smaller than in an SCC device; nevertheless, if \(t_{\text{sh}} \) is not sufficient for an assumed operation duration, then CP will become brittle, and its conductivity will be lower due to the transmutation of Cu alloy [15]. The standard value 0.26 m for \(t_{\text{sh}} \) is assumed to be the value in the ARIES–ST design [7]. A transport analysis of neutrons and radiation which are necessary to determine the required minimal shield thickness is not done in this study yet. As shown in Eq. (1), \(R_{\text{CP}} \) depends on \(t_{\text{sh}} \); therefore, we scanned \(t_{\text{sh}} \) in NCC settings.

The results of CON and \(P_{\text{coil}} \) are shown in Fig. 13. As \(t_{\text{sh}} \) increases, both become larger and have their minimum at a higher \(A \). At \(A = 2.25 \), for instance, \(P_{\text{coil}} \) increases from 291 to 608 MW, while CON increases from 1519 to 2251 mill/kWh as \(t_{\text{sh}} \) increases from 16 to 56 cm. The optimum value of \(A \) for the minimum CON increased from 1.75 to 2.5 at this \(t_{\text{sh}} \) range.

4. Scan in SCC Settings and Comparison between NCC and SCC

4.1 \(A \) dependence in SCC settings

The \(A \) dependence of CON, CON_capital, and CON_income are shown in Fig. 14 for the standard \(f_{\text{avail}} \) of 60% in SCC settings.

At \(A = 2.625 \) and 3.625, the maximum toroidal field in the TF coil \(B_{\text{max}} \), was higher than the critical magnetic field (11.8 T [10]); therefore, results are shown in the range \(2.75 \leq A \leq 3.5 \). We scanned \(A \) in this range at intervals of

![Fig. 12 Dependance of \(B_T, P_{\text{coil}}, \) and \(1/R_{\text{CP}}^2 \) on \(t_{\text{sh}}, \) at \(A = 2.25 \).](image)

![Fig. 13 Results of (a) \(P_{\text{coil}} \) and (b) CON of \(t_{\text{sh}} \) scanning.](image)

![Fig. 14 CON, CON_capital, and CON_income as functions of \(A \) in SCC settings.](image)
The high value of B_{max} was caused by the increase in B_{max}/B_T in a lower side of A while by the increase in B_T in a higher side of A [4].

As shown in Fig. 14, both the CON_income and CON_capital increase with A, with the latter increasing more rapidly than the former. The increment of CON_income for $A \leq 3.0$ is bigger than that for $A > 3.0$ because of the increasing q^* for $A > 3.0$ (described in Sec.2.3, around Eq.(8)) causing decreasing I_p, deterioration of confinement of the plasma, and increasing power for heating the plasma. Consequently, the value of CON becomes minimum at approximately $A = 3.125$. The CON_income, however, increases with A constantly because the heating power $P_{\text{aux}} + P_{\text{CD}}$ is reduced due to enhance confinement with larger R_P.

4.2 Comparison between NCC settings and SCC settings

We compared the NCC settings of standard I_{th}, with the SCC settings of standard f_{avail}. The comparison of $P_{\text{e-net}}$ is shown in Fig. 15. As described before, in SCC settings, results are shown in a range of $2.75 \leq A \leq 3.5$. Thus, the $P_{\text{e-net}}$ of SCC settings was higher than that of NCC settings in the absence of P_{coil}.

The reactor cost, the reactor weight, and the coil weight are compared in Fig. 16. We evaluated the weight of the TF coils by the formulas from Table 1. The dependence of the toroidal coil weight on A was relatively stronger in the NCC settings than in the SCC settings. We assumed that the outer TF coils were made from aluminum and referred to [6] for their weight density in NCC. Although the weight density of the TF coils was lower in NCC, their volume, V_{TFC}, was larger than in the SCC settings, due to the lower current density. The dependence of the reactor weight on A was far higher in the NCC settings than in the SCC settings due to the larger weight of the TF coils in the NCC settings. The CP was made as thicker as possible for lower ohmic loss; while in the case of SCC settings the thickness of its TF coils was determined by the fixed current density (20.3 MAm$^{-2}$ [10]) and the required coil current, as described in Sec. 2.1. As a result, the dependence of the reactor weight and then the reactor cost of NCC settings on A was stronger than in the SCC settings. However, the dependence on A of the reactor cost was weaker than that of the reactor weight in both settings, because the reactor cost included the cost which does not depend on weight, for instance, cost of CD and heating systems that depend on the output power. The difference of the reactor cost at the optimal A between NCC ($A = 2.0$) and SCC ($A = 3.125$) settings was small.

4.3 Comparison between NCC and SCC settings with scanning f_{avail}

In-vessel components, such as shield, blanket, and diverter, must be operated by remote handling due to high radiation induced by DT fusion fast neutrons. One of the noteworthy differences between an NCC and an SCC fusion reactor is the difficulty in the maintenance of in-vessel components. In the NCC case, coils are demountable, as in CTF concepts [9], where the entire procedure of disassembly and assembly or vice-versa is estimated at
60-90 days, given adequate terms and conditions [9]. I.N. Sviatoslavsky et al. reported that replacement of the upper and lower diverters and CP would take approximately 1700 hours [16]. E.T. Cheng et al. reported that the replacement of the divertor plates and CP took more or less, 598 hours [17]. In the SCC case, because no demountability is available, we have to access to in-vessel components through the spaces between TFCs. In ITER, the maximum duration of the replacement was estimated at 9 months [18]. In JET, over 450 individual components were remotely handled within the JET torus during a 15-week period operating at 6 days per week, 20 hours daily [19].

Although there were plenty of reports regarding maintenance, we were not able to determine the appropriate \(f_{avail} \); our \(f_{avail} \) of the standard value (75% for NCC and 60% for SCC) was an assumption. Therefore, we scanned the \(f_{avail} \) for both settings.

As shown in Fig. 17 (a), the CON of both of NCC and SCC decreases with increasing \(f_{avail} \), while its dependence on \(A \) is weaker in the SCC settings because of the weaker \(A \) dependence of the capital cost and \(P_{\text{e-net}} \) in the SCC settings. In Fig. 17 (b), if the reduction of the \(f_{avail} \) of SCC as compared with NCC is 0.20-0.25, then the SCC settings have a higher economic potential than the NCC settings.

Table 2 shows the main parameters in the NCC and

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NCC</th>
<th>SCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect ratio</td>
<td>2.00</td>
<td>3.13</td>
</tr>
<tr>
<td>Major radius [m]</td>
<td>2.31</td>
<td>3.27</td>
</tr>
<tr>
<td>Minor radius [m]</td>
<td>1.15</td>
<td>1.05</td>
</tr>
<tr>
<td>Elongation</td>
<td>2.03</td>
<td>1.78</td>
</tr>
<tr>
<td>Triangularity</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Plasma current [MA]</td>
<td>8.58</td>
<td>7.11</td>
</tr>
<tr>
<td>Bootstrap current fraction</td>
<td>0.57</td>
<td>0.56</td>
</tr>
<tr>
<td>Normalized beta</td>
<td>3.54</td>
<td>2.79</td>
</tr>
<tr>
<td>Toroidal beta [%]</td>
<td>9.10</td>
<td>3.72</td>
</tr>
<tr>
<td>Poloidal beta</td>
<td>0.89</td>
<td>1.09</td>
</tr>
<tr>
<td>(q_{95})</td>
<td>3.76</td>
<td>3.00</td>
</tr>
<tr>
<td>Electron temperature</td>
<td>15.0/15.0/</td>
<td></td>
</tr>
<tr>
<td>(center/average) [keV]</td>
<td>7.50</td>
<td>7.50</td>
</tr>
<tr>
<td>Electron density [10^{20} \text{m}^{-3}]</td>
<td>1.42/1.80/</td>
<td></td>
</tr>
<tr>
<td>(center/line average)</td>
<td>1.24</td>
<td>1.57</td>
</tr>
<tr>
<td>Greenwald fraction</td>
<td>0.60</td>
<td>0.76</td>
</tr>
<tr>
<td>H factor (98y2)</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Fusion power [MW]</td>
<td>143.2</td>
<td>170.8</td>
</tr>
<tr>
<td>Average neutron wall load [MW/m^2]</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>CD NB power [MW]</td>
<td>48.0</td>
<td>73.1</td>
</tr>
<tr>
<td>Heating NB power [MW]</td>
<td>131.2</td>
<td>84.1</td>
</tr>
<tr>
<td>Gloss electric power [MW]</td>
<td>1049.0</td>
<td>1049.0</td>
</tr>
<tr>
<td>Net electric power [MW]</td>
<td>293.1</td>
<td>682.1</td>
</tr>
</tbody>
</table>

Fig. 17 (a) Comparison of CON between NCC and SCC settings with \(f_{avail} \) scanning. (b) Dependence of CON on \(f_{avail} \) at \(A \), which has the minimum CON of each of NCC and SCC.

Fig. 18 (a) Results of CON with different \(R_{\text{hole}} \). (b) Dependence of \(P_{\text{coil}} \), CON_income, and CON_capital at \(A = 2.5 \) on \(R_{\text{hole}} \).
SCC settings, with standard values, near the economically optimal A.

We assumed that all the available space within the inner shield was used for the CP in the NCC settings. As shown in Fig. 16, TF coil weight accounts for a large fraction of the reactor weight in the NCC settings. We checked if CON could be lowered by assuming a smaller cross-sectional area of CP with a central hole to reduce the weight of CP in NCC settings. The results are shown in Fig. 18 (a). The CON does not decrease but increases with increased CP hole radius R_{hole}. It decreases the capital cost due to lower CP weight while the P_{coil} is increased due to higher current density in CP. The decrease in the total capital cost by the decrease in the CP volume is too small compared with the total cost, so that the decrease in the CON$_{\text{capital}}$ is lower than the decrease in the CON$_{\text{income}}$, as shown in Fig. 18 (b). Therefore, we could not reduce the CON in the NCC settings by reducing the cross-sectional area of CP.

5. Summary and Discussions

We studied the economy of fusion neutron sources with the normal conductive coils (NCC) and superconducting coils (SCC) for transmutation of TRU by using a system code, PEC. We referred to SABR [3] for conditions of the blanket, which contains the transuranics and the thermal conditions. We assumed the plasma aspect ratio (A) dependencies of the plasma elongation (κ) [11], and A, the k dependencies of normalized plasma beta (β_N) [12], and power selling by net electricity [4].

The cost of neutron (CON) is used for evaluating the economy of the device. In the NCC settings, ohmic loss in the coils (P_{coil}) was the dominant factor for economy in the low range of A due to a decrease in the income by power selling, as shown in the previous study [4]. It was caused by space reduction in the inboard toroidal coils (Center Post: CP). On the other hand, the increase in the capital cost due to the increase in reactor size was the dominant factor for the economy in the higher range of A. Consequently, in the NCC settings, CON became optimal at approximately $A = 2.0$. P_{coil} increased with increasing inboard shield thickness, t_{sh}, due to the reduced space for CP. Lateral t_{sh} resulted in CON degradation and shift of the economically optimal A to a higher value.

In the SCC settings, the variation of CON with A was relatively small compared with that of the NCC settings, mainly due to the absence of P_{coil} and fixed current density in the SCC. The increment of the capital cost with A was lower in the SCC settings than in the NCC settings, due to the smaller weight of coils with higher current density.

The dependence of reactor weight and reactor cost on A was stronger in the NCC settings than in the SCC settings due to the difference in each concept of coil design. NCC settings have P_{coil}, so that the dependence of net electricity on A was stronger, while a larger net electricity was expected in SCC. We also found that when SCC settings have the sufficient plant availability, their economic potential was relatively higher. It should be noted that development of a complicated and reliable remote-handling system would be needed to achieve enough plant availability in an SCC device.

The present results might depend on the assumptions made for the analysis, including fixed conditions of reactor components like blankets, and first walls omission of the central solenoid and non-inductive CD. The area and thickness of the outer blanket and t_{sh} will be assessed by neutron and radiation transport analysis in the future. The possibility of inserting a central solenoid for plasma start-up will also be considered. The scenario of plasma start-up will be assessed by analysis of the CD.

Acknowledgments

The authors thank the reviewer for pointing out the conditions required to achieve the performance on transmutation of TRUs and the fission power, which was newly included in Sec. 2.2 in revising the manuscript.