Properties of N-doped Diamond-like Carbon Films Prepared by the PLD Method

Shengyin LI1,2, Weidong WU1, Xueming WANG1, Feng WANG1, Yongjian TANG1 and Weiguo SUN2

1) Research Center of Laser Fusion, Mianyang 621900, Sichuan, China
2) Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, Sichuan, China

(Received 20 November 2008 / Accepted 18 June 2009)

N-doped diamond-like carbon (DLC) films were deposited on Si substrates by pulsed laser deposition (PLD) at varying N2 pressure. The films were characterized by Raman spectroscopy and X-ray diffraction (XRD). Spectra show that the sp² hybridized carbon content increases with increasing N2 pressure and that the films have a mainly amorphous structure. The residual stress of the films is reduced from 31.8 to −2.2 GPa by N-doping at appropriate N2 pressure.

Keywords: diamond-like carbon, N-doping, pulsed laser deposition, residual stress

DOI: 10.1585/pfr.4.S1008

Diamond-like carbon (DLC) films have many superior properties, including mechanical hardness, dielectric strength, chemical inertness, low coefficient of friction, and optical transparency in the infrared ranges, making them promising for a wide range of applications [1, 2]. They can be synthesized by a variety of methods, including pulsed laser deposition (PLD) [2, 3] and, under some conditions, filtered cathodic vacuum arc (FCVA) deposition [4]. DLC properties approach those of crystalline diamond. However, the films have very high intrinsic stress [5, 6] and consequently tend to exhibit low adhesion with increased thickness [5, 6], thus severely limiting their practical applications.

Alloying amorphous carbon (a-C) films with transition metals such as Ni, Co, Ti, Mo, and W is a common strategy for reducing residual stress in DLC films [7]. The effects of dopants such as B, P, and N on the microstructure, electrical structure, and mechanical and optical properties of a-C films have been studied. However, there has been no extensive study on the effect of nitrogen concentration on the properties of N-doped DLC films.

In this work, we prepared N-doped DLC films by PLD at varying N2 pressure. We then investigated the structure and residual stress of the films by Raman spectroscopy and X-ray diffraction (XRD).

N-doped diamond-like carbon films were deposited on Si wafers by PLD at room temperature. The distance between target and substrate was 4 cm. The excimer laser energy density was 7.5 J/cm². Nitrogen pressure was in the range 8-20 × 10⁻³ Pa.

The crystal structures and residual stresses of the films were determined by X-ray diffraction (X Pert PRO) using Cu Kα radiation with an incidence angle of 0.5° and a scanning resolution of 0.02°. The structures were further analyzed by visible Raman spectroscopy (Renishaw) with Ar laser (514.5 nm). Spectra were recorded in the 900-2500 cm⁻¹ range. All film thicknesses were about 500 nm, as determined by cross-section scanning electron microscopy (SEM).

Figure 1 shows Raman spectra of the films deposited at varying N2 pressure. Broad asymmetric bands are evident between 1000 and 1800 cm⁻¹, similar to those for DLC [2], indicating that the diamond-like phase predominates in the films. The spectra can be deconvoluted into...
two Raman active bands: D (disorder) and G (graphitic) bands [2,6]. All peak-fitting parameters were obtained by mixing Gaussian and Lorenzian shapes and linear backgrounds. The G band is attributed to the stretching-vibration mode of any pair of sp² sites, both in C=C chains and aromatic rings. The D band is attributed to the breathing mode of sp² sites in aromatic rings only [1].

Table 1 shows changes in the ratio of D-band to G-band intensity (I_D/I_G) and the residual stress σ at varying N₂ pressure. The ratio increases with increasing pressure, indicating that the relative concentration of sp² atoms increases in the films. The D and G bands shift a little with changing N₂ pressure. In addition, as shown in Fig. 1, weak peaks at around 2230 cm⁻¹ correspond to C≡N [8] bonds, implying that the degree of C≡N bonding is very small compared with the degree of carbon–carbon bonding.

Figure 2 shows glancing-incidence XRD (GIXRD) spectra of the films deposited on Si substrates at varying N₂ partial pressure. No significant diffraction peaks other than for the Si substrate are observed for all films, indicating that the films have a mainly amorphous structure. However, obvious peaks at 2θ = 40.04° for samples A and E may correspond to formation of a CNₓ phase. Residual stress is determined by measuring the shift in Si-substrate diffraction peak before and after deposition and then calculating quantitatively by the following equation [9]

\[
\sigma = \frac{E \cdot d_0}{v \cdot \cos(\theta_0 - \alpha)} - \frac{d_0}{\cos(\theta_0 - \alpha)} \cdot \frac{d_n}{\cos(\theta_n - \alpha)},
\]

where E, v, d₀, θ, and α are the Young’s modulus, Poisson’s ratio, d-spacing for (hkl) planes, and X-ray diffraction and incidence angles, respectively. The residual stresses of the films are summarized in Table 1. Stress has been reduced from 31.8 to −2.2 GPa by N-doping at appropriate N₂ partial pressure.

N-doped diamond-like carbon films have been deposited by PLD at varying N₂ pressure. Raman spectra studies show that the sp² hybridized carbon content increases with increasing N₂ pressure. XRD studies show that the films have a mainly amorphous structure and that the residual stress of the films is reduced to −2.2 GPa by N-doping at appropriate N₂ partial pressure.

This project was supported by the Science Foundation of China Academy of Engineering Physics, China (Grant No. 2005Z0805).