Steady-state photocurrent in poly(N-vinylcarbazole)(PVCz)(26,48 wt%)/poly(methyl methacrylate)(PMMA) blends is for the first time measured. The PVCz(26,48 wt%)/PMMA blends showed almost the same carrier-generation efficiencies at electric fields higher than $1 \times 10^5 \text{V/cm}$. The results are explained by high miscibility of the PVCz(26,48 wt%)/PMMA blends, suggesting the existence of PVCz chains in continuous PMMA-rich phase in the phase-separated structure. The miscibility is evaluated by means of excimer fluorescence of PVCz in these blends, fluorescence microscopy, and differential scanning calorimetry. Phase diagram of PVCz/PMMA/benzene ternary system is determined by cloud-point measurements.

Keywords: poly(N-vinylcarbazole), blends, carrier-generation efficiency, miscibility, excimer fluorescence

1. Introduction

Poly(N-vinylcarbazole) (PVCz), a typical photoconductive polymer, increasingly attracts attention. Electroluminescent polymer blends[1-5] and photorefractive composites[6,7] contain PVCz as a hole-transport polymer. These blends and composites are studied as materials for display and memory in future. The hole-transport properties of PVCz play an important role in the function of these blends and composites. This function may have a correlation with miscibility of the blends and composites. Miscibility of polymer blends is defined as the degree of homogeneity in the two polymer chains, independent of the ratio of the two components[8].

We evaluated miscibility of PVCz/polyoxyethylene (PEO) and PVCz/polystyrene (PS) blends as model systems by means of excimer fluorescence of PVCz[9,10]. Excimer fluorescence gives information on chain aggregation in the scale of ~ 10 nm. This information is not given by thermal analysis, small angle X-ray scattering, or microscopic methods.

Excimers are molecular complexes formed between two identical aromatic rings geometrically parallel to each other, one of which is in a singlet excited state[11]. Frank's group used for the first time excimer fluorescence of poly(2-vinylnaphthalene) as a probe for miscibility of polymer blends[12]. As for PVCz, carbazolyl groups overlap on whole faces to form a full-overlap excimer, and those overlapping on the part of the benzoic rings form a partial-overlap excimer[13,14]. There are few studies[15,16] on miscibility of PVCz blends or composites other than our previous studies[9,10]. Our previous studies[9,10] showed that we can evaluate the miscibility of PVCz blends by means of the intensity ratio of fluorescence from the partial-overlap excimer to that from the full-overlap excimer.

Steady-state photocurrent of neat PVCz and copolymers of PVCz as well as transient photocurrent of neat PVCz have been investigated [17-19]. It is not known whether aggregation or dispersion of PVCz chains in the PVCz blends
enhances the photoconductivity, since photocurrent in PVCz blends has never been studied to our knowledge. We have studied in the present work hole-transport properties of PVCz/poly(methyl methacrylate) (PMMA) blends by measuring steady-state photocurrent and characterized miscibility of these blends also by measuring excimer fluorescence of PVCz. We used this time PVCz/PMMA blends, since PVCz/PMMA blends were most suitable so far for electrode fabrications in the photocurrent measurements.

2. Experimental

We purchased PVCz (weight-average molecular weight \(M_w = 1.3 \times 10^5 \), number-average molecular weight \(M_n = 4.7 \times 10^4 \)) from Scientific Polymer Products, Inc. and PMMA \((M_w = 1.0 \times 10^5, M_n = 4.8 \times 10^4) \) from Aldrich, Co. The PVCz and PMMA were used without further purification. Benzene solutions of PVCz(10-100 wt%)/PMMA mixtures were prepared. Total polymer concentration was 3 g/100 mL. The benzene solutions were cast onto indium tin oxide (ITO) glasses or quartz substrates under benzene-saturated atmosphere. The films were dried under vacuum at room temperature for more than 1 days. All the films were turbid or opaque, which shows PVCz/PMMA blends are phase-separated.

Aluminum was vacuum-deposited onto the films cast on ITO glass for photocurrent measurements. We could not fabricate so far such samples with PVCz/PEO blends, PVCz/PS blends, and PVCz(more than 60 wt%)/PMMA blends. That is because the films were peeled off from ITO substrates during vacuum drying or aluminum was short-circuited to ITO owing to cracking of films.

Steady-state measurements of PVCz(26,48 wt%)PMMA blends and PVCz (100 wt%) were performed under nitrogen atmosphere at room temperature. The positive electrode (ITO) sides of the samples were illuminated with the light from a He-Cd laser (wavelength 325 nm). The light intensity was \(1.2 \times 10^{14} - 1.9 \times 10^{14} \) photons cm\(^{-2}\) s\(^{-1}\). Voltages were applied with a direct-current power supply (TOWA Ltd.) and currents were measured with a microammeter (TOA Electronics Ltd.).

Steady-state fluorescence spectra of PVCz(10-100 wt%)/PMMA blends were measured at room temperature in air with a Hitachi 850 fluorescence spectrophotometer. These spectra were measured in front-face arrangement. Excitation wavelength was 325 nm.

Fluorescence microscopy was used for examining PVCz chain aggregation in the scale more than \(\mu m \) in phase-separated structures. The microscopic images were measured with an Olympus BX 50 optical microscope.

A differential scanning calorimeter (Mettler DSC 30) was used for heating and cooling the samples between 25 °C and 250 °C with the rate of 10 °C/min. Glass transition temperatures of PVCz(0-100 wt%)/PMMA blends were measured on the second heating.

We prepared PVCz/PMMA/benzene solutions with various compositions and added benzene to these ternary systems at room temperature until cloudy solutions changed into transparent ones. This compositions were determined as cloud points.

3. Results and discussion

Figure 1 shows the carrier-generation efficiencies of PVCz(26,48 wt%)/PMMA blends ((1a), (1b)) and PVCz(100 wt%)((1c)). These efficiencies mean the numbers of carriers per photon. These values are given by \(J_\text{ph} / e I_\text{ph} \), where \(J_\text{ph} (\text{A cm}^{-2}) \) is the photocurrent density, \(e (\text{C}) \) is the elementary electric charge, and \(I_\text{ph} (\text{photons cm}^{-2} \text{s}^{-1}) \) is the number of absorbed photons. Absorbances in PVCz(26,48 wt%)/PMMA blends and PVCz(100 wt%) are 0.31, 1.1, and about 3, respectively. This indicates that carriers are generated by the beam in the bulk of the films for PVCz(26,48 wt%)/PMMA blends and at the surface (within 1 \(\mu m \) depth) of the film for PVCz(100 wt%).

The carrier-generation efficiencies for (1a) and (1b) are from 0.01 to 0.1 times as small as those for (1c). The efficiencies in Figure 1 are fitted with powers of electric fields, \(E \). Their dependencies on electric fields in (1a), (1b) and (1c) change at threshold electric fields. In electric fields higher than \(1 \times 10^5 \) V cm\(^{-1}\), PVCz(26,48 wt%)/PMMA blends show the similar amounts of efficiency. In this range of electric fields,
PVCz(26,48 wt%)/PMMA blends ((1a) and (1b)) represent almost same dependencies on electric fields, $E^{3.0}$ and $E^{3.3}$. Such dependencies differ from the dependency in PVCz(100 wt%) ((1c)), $E^{2.5}$. In low electric fields, PVCz(26,48 wt%)/PMMA blends ((1a) and (1b)) and PVCz(100 wt%) ((1c)) show similar dependencies on electric fields, $E^{1.4}$, $E^{1.7}$ and $E^{1.6}$.

The most remarkable result in the present paper is that PVCz(26 wt%)IPMMA blend has the similar carrier-generation efficiencies as PVCz(48 wt%)IPMMA blend in electric fields higher than 1×10^5 V·cm$^{-1}$, though PVCz weight fraction in the former is as half as that in the latter. It has been reported that mobilities of hole-transporting diamine in a binder polymer increase drastically with increase in concentrations of the diamine: $\mu \propto r \exp(-2r/r_0)$, where μ is mobility, r is average distance between the diamine molecules, r_0 is a parameter[20]. This holds true for charge-transfer complexes of PVCzTrinitrofluorenone[21]. The remarkable photocurrent-feature in the PVCz(26,48 wt%)/PMMA blends should be correlated to miscibility of these blends, which will be discussed below. Excimer fluorescence of PVCz in these blends is a powerful tool for elucidating the miscibility of PVCz blends.

Figure 1 shows fluorescence spectra of PVCz in PVCz(26,48 wt%)/PMMA blends. Two broad bands peaking at 2.65×10^4 cm$^{-1}$ (377 nm) and 2.43×10^4 cm$^{-1}$ (412 nm) correspond to partial- and full-overlap excimers, respectively[13,14]. Resolving the spectra into two overlapping components gives fraction of each band more explicitly, as is shown in Figure 2. Method of the band-resolving was reported in our previous work[9]. The fittings were performed with two Gaussians. The result became rather poor, when the intensity of partial-overlap excimer emission relative to that of full-overlap excimer emission in the spectrum is very large as in (2a). This is since the spectrum (2a) might contain emission band from carbazolyl monomer as the third component[22]. We omitted this third component centered at about 2.86×10^4 cm$^{-1}$ (350 nm) from the band-resolving for the sake of simplicity.

Figure 2 shows results of band-resolving for PVCz(10-100 wt%)/PMMA blends ((3a)) and for PVCz(8.0-100 wt%)/PEO blends[9] as comparison ((3b)). The F values in Figure 3 are calculated as the fraction of partial-overlap excimer emission on the basis of band-resolving. Large F values mean that PVCz chains aggregate weakly or rather dispersed in the phase-separated structure[9,10]. This is because the excited energy detrapped from the partial-overlap excimer sites mainly migrates intermolecularly to neighboring PVCz chains in aggregates, resulting in further intrachain migration to full-overlap excimer site[9,10]. All the F values of PVCz/PMMA ((3a)) and PEO ((3b)) blends are larger than the F value for PVCz(100 wt%). This indicates that there are several amounts of PMMA chains or PEO chains existing among PVCz chains in PVCz-rich phase in the phase-separated structures. All the F values for PVCz/PMMA blends ((3a)) are larger than those for PVCz/PEO blends of corresponding PVCz fractions ((3b)). This indicates that PVCz/PMMA blends are more miscible than PVCz/PEO blends: PMMA chains tend to be in and between PVCz aggregates more than PEO chains.
do in the local structure of ~10 nm in scale, and PVCz chains can be dissolved in PMMA-rich phase.

Figure 4 shows fluorescence microscopic images for PVCz(26,48 wt%)/PMMA. These images manifest two points for both of PVCz(26 wt%)/PMMA and PVCz(48 wt%)/PMMA blends. Firstly, PMMA-rich phase forms continuous phase and PVCz-rich phase forms dispersion phase. Secondly, some of white areas in (4a) and (4b) are not pure-white, containing dark spots. This indicates that the dispersed PVCz-rich phase contains PMMA chains, leading to existence of multiple PMMA-rich phase which contains PVCz chains inside. Excimer fluorescence properties of PVCz(26,48 wt%)/PMMA blends indicate that PVCz chains also exist in PMMA-rich phase on molecular level. Information from the microscopic images supports the information from the excimer fluorescence, which suggests high miscibility of PVCz and PMMA, though sizes of phase-separated structure observed by two methods are quite different.

Carriers generated by light in the blends can move between the dispersed PVCz-aggregates through continuous PMMA-rich phase, since this PMMA-rich phase contains PVCz-chains. The carriers must move through continuous PMMA-rich phase as well as through PVCz-rich phase to reach aluminum electrodes. The PVCz chains in PMMA-rich phase of PVCz(26 wt%)/PMMA and PVCz(48 wt%)/PMMA blends are presumably dispersed similarly. That is why PVCz(26 wt%)/PMMA and PVCz(48 wt%)/PMMA blends show similar carrier-generation efficiencies. Such a mechanism would be specific to polymer blends with binary phases. In contrast to the present case, the diamine molecules in a binder polymer form small crystals or solid solutions, leading to single local concentration of diamine molecules [20].

The images of (4a) and (4b) are measured from the top of the films. The maximum size of the dispersed PVCz-aggregates in (4a) and (4b) is from 50 to 100 µm, which is larger than the film thickness, 20 µm. The PVCz-rich phase may contact with both of ITO and aluminum electrodes in the sandwich configuration. If all the carriers moved through the PVCz-rich phase which contacts with the two electrodes, carrier-generation efficiencies of PVCz(48 wt%)/PMMA blends...
blend should have been larger than those PVCz(26 wt%)/PMMA blend, since PVCz-rich phase which contacts with the two electrodes has larger area in PVCz(48 wt%)/PMMA blend than in PVCz(26 wt%)/PMMA blend, as is shown in (4a) and (4b). Carrier-transport not only through PVCz-rich phase but also through PMMA-rich phase is of necessity, judging from our experimental results. We confirmed that PMMA (100 wt%) film does not show any photocurrent.

Fluorescence spectroscopy observes mainly the situation of PVCz-rich phase. The F value, reflecting degree of dispersion of PVCz chains in PVCz-rich phase[9], is larger for PVCz(26 wt%)/PMMA blend than for PVCz(48 wt%)/PMMA blend, as is shown in (3a). This indicates that the local concentration of PVCz chains in PVCz-rich phase in the former is smaller than that in the latter. On the other hand, the same carrier-generation efficiencies of these blends in electric fields higher than \(1 \times 10^5\) V/cm, are largely affected by PVCz chains in PMMA-rich phase, whose local concentration might not be so different in both of the blends.

Table 1 shows glass transition temperatures of PVCz(0-100 wt%)/PMMA blends. Glass transition temperatures of PMMA (100 wt%) and PVCz (100 wt%) are 107 °C and 197 °C, respectively. A glass transition temperature of PVCz(48 wt%)/PMMA blend is 127 °C, which differs from that of PMMA (100 wt%) and that of PVCz (100 wt%). This suggests high miscibility of PVCz and PMMA, which is consistent with the excimer fluorescence properties. The blends in Table 1 other than PVCz(48 wt%)/PMMA have the same glass transition temperatures as PMMA (100 wt%) or PVCz (100 wt%).

Figure 5 represents phase diagram of PVCz/PMMA/benzene solutions. A solvent common to two kinds of polymers has been useful in cloud-point measurements[23,24]. Minimum benzene-weight for transparent solution decreases with the increase in PVCz weight fraction in PVCz/PMMA. It should be noted that this minimum benzene-weight decreases slowly with increase in PVCz weight fraction in PVCz/PMMA from 0 wt%/100 wt%((5a)) to 70 wt%/30 wt% ((5b)). This benzene-weight decreases drastically with increase in PVCz weight fraction in PVCz/PMMA from 70 wt%/30 wt%((5b)) to 100 wt%/0 wt%((5c)). Composition of 70 wt%/30 wt%((5b)) for PVCz/PMMA corresponds to 4.0 wt%/1.7 wt%/94.3 wt%((5b)) for PVCz/PMMA/benzene. This fact means that

Figure 4. Fluorescence microscopic images of phase-separated structure for (4a) PVCz(26 wt%)/PMMA; (4b) PVCz(48 wt%)/PMMA. White areas are PVCz-rich phase. Black areas are PMMA-rich phase.
PVCz interacts with PMMA rather than benzene when PVCz weight fraction in PVCz/PMMA is smaller than 70 wt%, reflecting high miscibility of PVCz and PMMA.

Conclusion

PVCz(26 wt%)/PMMA blend showed carrier-generation efficiencies under photoirradiation similar to those of PVCz(48 wt%)/PMMA blend. This can be explained by existence of PVCz chains in continuous PMMA-rich phase in the phase-separated structure.

Acknowledgements

The authors thank Prof. Takashi Kato and Dr. Kiyoshi Kanie for their help in DSC. The authors also thank Prof. Toshio Nishi for his advice on cloud-point measurements.

References