Proceedings of the Japan Academy, Series B
Online ISSN : 1349-2896
Print ISSN : 0386-2208
ISSN-L : 0386-2208
Original Article
Both the transglycosylase and transpeptidase functions in plastid penicillin-binding protein are essential for plastid division in Physcomitrella patens
Yoshiko TAKAHASHIKatsuaki TAKECHI Susumu TAKIOHiroyoshi TAKANO
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2016 Volume 92 Issue 10 Pages 499-508

Details
Abstract

Class A penicillin-binding proteins (PBPs) are active in the final step of bacterial peptidoglycan biosynthesis. They possess a transglycosylase (TG) domain to polymerize the glycan chains and a transpeptidase (TP) domain to catalyze peptide cross-linking. We reported that knockout of the Pbp gene in the moss Physcomitrella patensPpPbp) results in a macrochloroplast phenotype by affecting plastid division. Here, expression of PpPBP-GFP in ΔPpPbp restored the wild-type phenotype and GFP fluorescence was observed mainly in the periphery of each chloroplast. Stable transformants expressing Anabaena PBP with the plastid-targeting sequence, or PpPBP replacing the Anabaena TP domain exhibited partial recovery, while chloroplast number was recovered to that of wild-type plants in the transformant expressing PpPBP replacing the Anabaena TG domain. Transient expression experiments with site-directed mutagenized PpPBP showed that mutations in the conserved amino acids in both domains interfered with phenotype recovery. These results suggest that both TG and TP functions are essential for function of PpPBP in moss chloroplast division.

Content from these authors
© 2016 The Japan Academy
Previous article
feedback
Top