101. A Theorem Concerning the Fourier Series of a Quadratically Summable Function.

By Tatsuo KAWATA.

Mathematical Institute, Tohoku Imperial University, Sendai.

(Comm. by M. FUJIWARA, M.I.A., Dec. 13, 1937.)

1. Recently Mr. R. Salem\(^1\) has proved the following theorem:

If \(f(x) \) is a bounded periodic function with period \(2\pi \) and its Fourier coefficients are \(a_n, b_n \), then the following relation holds for almost all values of \(x \),

\[
\lim_{s \to 0} \left[\frac{a_0}{2} + \sum_{n=1}^{\infty} \frac{a_n \cos nx + b_n \sin nx}{1 + s\sqrt{\log n}} \right] = f(x).
\]

Actually he proved the relation (1) replacing more general sequence \(\{\psi_n(s)\} \) for \(\{1/(1+s\sqrt{\log n})\} \). The object of the present paper is to prove the validity of (1) under the condition that \(f(x) \in L_2 \), i.e. is quadratically summable. In this form the theorem says more than the well known theorem of Kolmogoroff-Seliverstoff-Plessner\(^2\) concerning the convergence factor of the Fourier series of a quadratically summable function. But we can prove our theorem by using the theorem of Kolmogoroff-Seliverstoff-Plessner.

2. Theorem 1. If \(f(x) \in L_2 \) and is periodic with period \(2\pi \) and \(a_n, b_n \) are its Fourier coefficients, then the relation (1) holds for almost all values of \(x \).

Theorem 2. In Theorem 1, we can replace the sequence \(\{1/(1+s\sqrt{\log n})\} \) by the sequence \(\{\psi_n(s)\} \) which satisfies the following conditions:

1°. \(\{\psi_n(s)\} \) is the decreasing and convex sequence of positive functions, \(0 < s < 1 \) (\(\psi_0(s) = 1 \)).

2°. \(\lim_{s \to 0} \psi_n(s) = 1 \), \((n \text{ fixed}) \).

3°. \(\lim_{n \to \infty} \psi_n(s) = 0 \), \((s \text{ fixed, } > 0) \).

4°. \(\psi_n(s) = O \left(\sqrt{\log n} \right) \), \((s \text{ fixed, } > 0) \).

5°. \(\psi_n(s) \) has a finite number of maxima for any fixed \(n \).

The proof of Theorem 2 is quite similar as that of Theorem 1 and so we only prove Theorem 1.

Let \(E_1 \) be the set of \(x \) such that

1) R. Salem, Sur une méthode de sommation, valable presque partout, pour les séries de Fourier de fonction continue, Comptes Rendus, 205 (1937), pp. 14-16.

converges. Then $mE_1 = 2\pi$. This is the theorem of Kolmogoroff-Seliverstoff-Plessner. And for $x \in E_1$,
\[
\sum_{n=2}^{N} (a_n \cos nx + b_n \sin nx) = o(\sqrt[\log N]) .
\]
We can easily verify that for $x \in E_1$,
\[
f(x) = \frac{1}{2} a_0 + \frac{\sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx}{1 + s\sqrt{\log n}}
\]
converges and its N-th partial sum is $o(\sqrt[\log n])$ for every value of s.

The Parseval relation shows that
\[
\lim_{\pi \to 0} \frac{1}{\pi} \int_{-\pi}^{\pi} |f(x, s) - f(x)|^2 dx = \lim_{s \to 0} \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \left(\frac{1}{1 + s\sqrt{\log n}} - 1 \right)^2 = 0 .
\]

From the known result concerning the convergence in mean, we see that there exists a sequence $\{s_n\}$ (lim $s_n = 0$) such that
\[
\lim_{s \to \infty} f(x, s_n) = f(x)
\]
for almost all values of x.

Now let $f(x) = f^+(x) - f^-(x)$, where
\[
f^+(x) = f(x), \quad f^-(x) = -f(x) ,
\]
for $x \in S_1$, and $= 0$, otherwise.

Then $f^+(x) \geq 0$ and $f^+(x), f^-(x) \leq |f(x)|$.

Write
\[
f^+(x) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + \beta_n \sin nx) ,
\]
\[
f^-(x) = \frac{1}{2} \gamma_0 + \sum_{n=1}^{\infty} (\gamma_n \cos nx + \delta_n \sin nx) ,
\]
then clearly $a_n - \gamma_n = a_n, \beta_n - \delta_n = b_n$. Similar arguments as above show that there exist a set S_1 and a sequence $\{s_n\}$ such that $mS_1 = 2\pi$ and for $x \in S_1, f^+(x, s)$ converges and the N-th partial sums are $o(\sqrt[\log N])$ and $\lim_{n \to \infty} f^+(x, s_n) = f^+(x)$. By applying the Abel's transformation twice, we have, if $x \in S_1$

\[
(3) \quad f^+(x, s) = \lim_{N \to \infty} \left\{ \frac{1}{2} a_0 + \sum_{n=1}^{N} \frac{a_n \cos nx + \beta_n \sin nx}{1 + s\sqrt{\log n}} \right\}
\]

\[
(4) \quad = \lim_{N \to \infty} \left\{ \frac{1}{2} \sum_{n=0}^{N-2} K_n(x) J^2 \frac{1}{1 + s\sqrt{\log n}} + K_{N-1}(x) J^2 \frac{1}{1 + s\sqrt{\log (N-1)}} + S_N(x) \frac{1}{1 + s\sqrt{\log N}} \right\} ,
\]
where $S_n(x)$ is the N-th partial sum of the series in the bracket of the right hand side of (3) and

$$K_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x+t) \frac{\sin^2(nt/2)}{\sin^2(t/2)} dt, \quad (n > 0), \quad K_0(x) = a_0$$

and

$$\Delta a_p = a_p - a_{p+1}.$$

In this, we must replace 1 for $\frac{1}{1 + sv \log n}$ if $n = 0$. The last term in the bracket of (4) tends to zero as $N \to \infty$ and the same is also easily verified for the second term. Thus

$$f^+(x, s) = \sum_{n=0}^{\infty} K_n(x) \frac{1}{1 + s \sqrt{\log n}},$$

where we notice that $K_n(x)$ and $\Delta^2 \frac{1}{1 + s \sqrt{\log n}}$ are positive and $f^+(x, s)$ is also positive. Now take two numbers s_p, s_{p+1} from $\{s_n\}$ such that $s_{p+1} \leq s \leq s_p$. Then we have

$$0 \leq f^+(x, s) \leq \sum_{n=0}^{\infty} K_n(x) \frac{1}{1 + s_p \sqrt{\log n}} + \sum_{n=0}^{\infty} K_n(x) \frac{1}{1 + s_{p+1} \sqrt{\log n}} + \sum_{n=2}^{n_{s+2}} K_n(x) \frac{1}{1 + s \sqrt{\log n}}$$

$$= f^+(x, s_p) + f^+(x, s_{p+1}) + \frac{1}{n_s} \int_0^{2\pi} |f(x+t)| \frac{\sin^2(n_s t/2)}{\sin^2(t/2)} dt,$$

for some n_s which tends to ∞ as $s \to 0$.

Hence we have

$$\lim_{s \to 0} f^+(x, s) \leq 2f^+(x) \leq 2|f(x)|.$$

Similarly there exists a set S_2 such that for $x \in S_2$,

$$\lim_{s \to 0} f^-(x, s) \leq 3|f(x)|.$$

Thus for $x \in S_1 \cdot S_2$ we have

$$\lim_{s \to 0} |f(x, s)| \leq \lim_{s \to 0} f^+(x, s) + \lim_{s \to 0} f^-(x, s) \leq 6|f(x)|.$$

Now let

$$f_M = \sum_{n=-M+1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

and

$$f_M(x, s) = \sum_{n=-M+1}^{\infty} \frac{a_n \cos nx + b_n \sin nx}{1 + s \sqrt{\log n}}, \quad (x \in E_1).$$

Then there exists a set E_M such that $mE_M = 2\pi$ and for $x \in E_M$,

Thus in \(E_M \), \(\lim_{s \to 0} |f_M(x, s)| \) is finite for every \(M \). Squaring and integrating both sides of (5), we have
\[
\int_{-\pi}^{\pi} \left(\lim_{s \to 0} |f_M(x, s)| \right)^2 dx \leq 6\pi \int_{-\pi}^{\pi} |f_M(x)|^2 dx = 6\pi \sum_{n=-M+1}^{\infty} (a_n^2 + b_n^2).
\]
Hence we get
\[
\lim_{M \to \infty} \int_{-\pi}^{\pi} \left(\lim_{s \to 0} |f_M(x, s)| \right)^2 dx = 0.
\]
Therefore there exist a set \(E \) and a sequence \(M_k \) such that \(mE = 2\pi \), and for \(x \in E \)
\[
\lim_{K \to \infty} \lim_{s \to 0} |f_{M_k}(x, s)| = 0.
\]
Now for \(x \in E \),
\[
\lim_{s, s' \to 0} |f(x, s) - f(x, s')| \leq \lim_{s, s' \to 0} \sum_{n=1}^{M_k} (a_n \cos nx + b_n \sin nx)
\times \left(\frac{1}{1 + s \sqrt{\log n}} - \frac{1}{1 + s' \sqrt{\log n}} \right)
+ 2 \lim_{s \to 0} \sum_{n=-M_k+1}^{\infty} (a_n \cos nx + b_n \sin nx) \frac{1}{1 + s \sqrt{\log n}}
= 2 \lim_{s \to 0} \sum_{n=-M_k+1}^{\infty} (a_n \cos nx + b_n \sin nx) \frac{1}{1 + s \sqrt{\log n}}
\]
which is arbitrarily small by taking \(k \) large. Thus \(\lim_{s \to 0} f(x, s) \) exists for \(x \in E \). The fact that the limiting value is \(f(x) \) is an immediate consequence of (2). Thus we complete the proof.