Let E be a closed set of capacity zero\(^1\) on the z-plane and C be a Jordan curve surrounding E and D be the domain bounded by E and C. Let $w = w(z)$ be one-valued and meromorphic in D and on C and have an essential singularity at every point of E and F' be the Riemann surface of the inverse function $z = z(w)$ of $w = w(z)$ spread over the w-plane. Concerning F', the following facts are known: (i) F' covers any point on the w-plane infinitely many times, except a set of points of capacity zero\(^2\). (ii) Let w_0 be a regular point of F'. Then $z(w)$ can be continued analytically on the half-lines $w = w_0 + re^{i\theta}$ $(0 \leq r < \infty)$ indefinitely or till we meet the image of C, except a set of values of θ of measure zero\(^3\).

Let (w_0) be a boundary point of F', whose projection on the w-plane is w_0. Iversen called (w_0) a direct transcendental singularity of $z(w)$, if w_0 is lacunary for a connected piece F_0 of F, which lies above a disc K_0 about w_0 and has (w_0) as its boundary point.

We will prove the following third property of F'.

Theorem. The set of points on the w-plane, which are the projections of direct transcendental singularities of $z(w)$ is of capacity zero.

We will first prove a lemma.

Lemma. Let F_0 be a connected piece of a Riemann surface F spread over the w-plane, which lies above a disc K_0 bounded by a circle C_0. Suppose that F_0 does not cover a closed set E_0 which lies with its boundary inside C_0. If there exists a non-constant $f(w)$ on F_0, which satisfies the following conditions: (i) $f(w)$ is one-valued and meromorphic on F_0, (ii) $f(w)$ does not take the values on a closed set E of capacity zero, (iii) $f(w)$ tends to E, when w tends to any accessible boundary point of F_0, whose projection lies inside C_0, then $\text{cap. } E_0 = 0$.

Proof. Let \tilde{F} be the simply connected universal covering Riemann surface of F_0. We map \tilde{F} on $|x| < 1$ by $w = \varphi(x)$. Suppose that $\text{cap. } E_0 > 0$, then, as I have proved in my former paper\(^4\), the accessible

1) In this note, "capacity" means "logarithmic capacity."

4) M. Tsuji: On the domain of existence of an implicit function defined by an integral relation $G(x, y) = 0$. Proc. 19 (1943).
boundary points of F_0, whose projections lie inside C_0, correspond to a set e_0 of positive measure on $|x|=1$. Since $\text{cap. } E=0$, by Evans’ theorem, there exists a positive mass-distribution $d\mu(a)$ of total mass 1 on E, such that

$$u(z)=\int_E \log \frac{1}{|z-a|} d\mu(a)$$

tends to $+\infty$, when z tends to any point of E. Let $v(z)$ be the conjugate harmonic function of $u(z)$ and put $H(z)=e^{-(u+i\phi)}$. Then $H(z)$ is meromorphic outside E and tends to zero, when z tends to any point of E. We put $G(z)=H(f(\varphi(x)))$. Then $G(z)$ is one-valued and meromorphic in $|x|<1$.

If x tends to any point of e_0 non-tangentially to $|x|=1$, $f(\varphi(x))$ tends to E, so that $G(x)$ tends to zero. Hence by Priwaloff’s theorem, $G(x) \equiv 0$, or $f(w) \equiv \text{const.}$, which contradicts the hypothesis. Hence $\text{cap. } E_0=0$, q.e.d.

By this lemma, we can prove the Theorem as follows.

Let F_0 be a connected piece of F, which lies above a disc K_0 bounded by a circle C_0. We suppose that F_0 does not contain the image of C.

We see easily that, $z(w)$ tends to E, when w tends to any accessible boundary point of F_0, whose projection lies inside C_0. Since $z(w)$ does not take the values on E, we have by the Lemma, that the set of points inside C_0 which are uncovered by F_0 is of capacity zero. This point established, we can proceed similarly as in my former paper and prove the Theorem.

6) M. Tsuji, l.c. 4).