75. Notes on Topological Spaces. III. On Space of Maximal Ideals of Semiring

By Kiyoshi ISÉKI and Yasue MIYANAGA

Definition 1. A semiring A is an algebra with two binary operations, addition (written $+$) which is associative, and multiplication which is associative, and satisfies the distributive law

$$a(b+c) = ab + ac, \quad (b+c)a = ba + ca.$$

In this paper, we suppose that A has the further properties:

1) There are two elements $0, 1$ such that

$$x + 0 = x, \quad x \cdot 1 = x$$

for every x of A.

2) Two operations, addition and multiplication, are commutative.

Definition 2. A non-empty proper subset I of A is called an ideal, if

1) $a, b \in I$ implies $a + b \in I$,
2) $a \in I, x \in A$ implies $ax \in I$.

W. Slowikowski and W. Zawadowski [6] proved that every ideal is contained in a maximal ideal. An ideal is maximal if there is no ideal containing properly it.

Let \mathcal{M} be the set of all maximal ideals in a semiring A. We shall define two topologies on \mathcal{M}.

For every x of A, we denote by \mathcal{J}_x the set of all maximal ideals containing x, and by I_x the set $\mathcal{M} - \mathcal{J}_x$, i.e. the set of all maximal ideals not containing x. Let I be an ideal of A, we denote by \mathcal{J}_I the set of all maximal ideals containing I.

We shall choose the family $\{\mathcal{J}_x | x \in A\}$ as a subbase for open sets of \mathcal{M}. We shall refer to the resulting topology on \mathcal{M} as \mathcal{J}-topology (in symbol, \mathcal{M}_J). Similarly, we shall take the family $\{I_x | x \in A\}$ as a subbase for open sets of \mathcal{M} (in symbol, \mathcal{M}_I). These two topologies for normed ring or general commutative ring were considered by I. Gelfand and G. Silov [2] or P. Samuel [5].

Let M_1, M_2 be two distinct elements of \mathcal{M}. Then we have $M_1 + M_2 = A$. Therefore there are a, b such that $a + b = 1$ and $a \in M_1, b \in M_2$.

326 K. Iséxi and Y. Miyana \\

Let $b \in M_2$, so we have $\mathcal{J}_a \ni M_1$, $\mathcal{J}_b \ni M_2$ and $\mathcal{J}_a \cap M_b = 0$. Hence

Theorem 1. The topological space \mathfrak{M}_A is a T_2-space.

Let M be an element of \mathfrak{M}_F, and $M \ni M_1 \in \mathfrak{M}_F$, then there is an element a such that $a \in M_1$ and $a \notin M$. Therefore $\mathcal{J}_a \ni M_1$ and $\bigcap_{x \in M} \mathcal{J}_x \ni M_1$. This implies $M = \bigcap_{x \in M} \mathcal{J}_x$. Hence we have the following

Theorem 2. The topological space \mathfrak{M}_F is a T_1-space.

Let I be an ideal of A and $\{a_\lambda\}$ a generator of I, then we have

$$\mathcal{J}_I = \bigcap_{\lambda} \mathcal{J}_{a_\lambda}.$$

Therefore, the closed sets for the topological space \mathfrak{M}_F have the form $\mathcal{J}_{I_1} \cap \mathcal{J}_{I_2} \cap \cdots \cap \mathcal{J}_{I_n}$, where I_i are ideals of A.

Let $I = \bigcap_{i=1}^n I_i$, if $\mathcal{J}_{I_i} \ni M$ for some i, then $M \ni I_i$ and $M \ni I$. This implies $\mathcal{J}_I \ni M$ and we have $\bigcap_{i=1}^n \mathcal{J}_{I_i} \subset \mathcal{J}_I$. Suppose that there is a maximal ideal M such that $M \ni \bigcap_{i=1}^n \mathcal{J}_{I_i}$, then $M \ni \mathcal{J}_I$ and $M \ni \bigcup_{i=1}^n \mathcal{J}_{I_i}$. Hence $M \ni I$ and M does not contain every I_i ($i = 1, 2, \cdots, n$). Therefore, since M is a maximal ideal, there are elements $a_i \in I_i$ and $m_i \in M$ such that

$$a_i + m_i = 1 \quad (i = 1, 2, \cdots, n).$$

Thus, we have

$$1 = a_1 a_2 \cdots a_n + m, \quad m \in M$$

and $a_1 a_2 \cdots a_n \in I$. This implies $I + M = A$. Hence, by $I \subset M$, we have $M = A$, which is a contradiction. This shows the following relation:

$$\bigcup_{i=1}^n J_{I_i} = \mathcal{J}_I$$

and we have the following

Theorem 3. The closed sets for \mathfrak{M}_F are expressed by sets \mathcal{J}_I, where I is an ideal of A.

By Theorem 3, we shall show the following

Theorem 4. The space \mathfrak{M}_F is a compact T_1-space.

To prove it, let $\{J_{I_\lambda}\}$ be a family of closed sets in \mathfrak{M}_F with the finite intersection property, where I_λ are ideals in A. Therefore, any finite family of I_λ does not generate the semiring A. Hence the ideal I generated by $\{I_\lambda\}$ does not contain the unit 1 of A. This shows that I is contained in a maximal ideal M. Hence

$$\bigcap_{\lambda} J_{I_\lambda} \ni M.$$

Therefore, since $\bigcap_{\lambda} J_{I_\lambda}$ is non-empty, \mathfrak{M}_F is a compact space.

Example. Let A be the semiring of non-negative integers with ordinary addition and multiplication. An ideal I of A is maximal, if and only if, there is a prime number p such that $I = \langle p \rangle$. As closed set of \mathfrak{M}_F is finite, any distinct two elements of \mathfrak{M}_F can not separate
by disjoint open sets. Hence \mathcal{M} for Γ-topology is not a T_σ-space.

Following W. Slowikowski and W. Zawadowski [6], we shall define positive semirings.

Definition 3. A semiring A is positive, if, for every a of A, $1 + a$ has an inverse.

Let A be a positive semiring, then, for any element a of A, there is an element b such that $ab + b = 1$, i.e. $(a) + (b) = A$. This means that, for every element a of a positive semiring A, A contains at least one element b such that A is generated by a and b. Hence any maximal ideal M containing b does not contain a. Consequently $\Delta_b \subset \Gamma_a$. Hence we have

Lemma 1. Every open set of \mathcal{M}_r for a positive semiring contains an open set of \mathcal{M}_s.

Any set Γ_a is a closed set for \mathcal{M}_s. If Γ_a is a closed set for \mathcal{M}_r, then there is an ideal I of A such that $\Gamma_a = A$ by Theorem 3. If $(a) + I = A$, then there is a maximal ideal M containing $(a) + I$, and $\Gamma_a \neq M$ and $M \in J$, therefore this implies $\Gamma_a \neq M$. Hence we have $(a) + I = A$, so there are such elements $x \in A$ and $b \in I$ that $ax + b = 1$.

This shows that any maximal ideal containing b does not contain a. Hence $\Delta_b \subset \Gamma_a$. Clearly, $\Delta_b \subset J_b$. Therefore $\Delta_b = \Gamma_a$ by $\Gamma_a = A$.

Lemma 2. If Γ_a is closed for \mathcal{M}_r of a positive semiring, then there is an element b such that $\Delta_b = \Gamma_a$.

Conversely, we have easily the following

Lemma 3. If, for any element a of A, there is an element b such that $\Gamma_a = A_b$, then Γ-topology and Δ-topology on \mathcal{M} coincide.

Hence we have the following

Theorem 5. Γ-topology and Δ-topology for \mathcal{M} of a positive semiring A coincide, if and only if, for every a of A, there is an element b of A such that maximal ideals not containing a are same of the family of maximal ideals containing b.

Definition 4. If for every two maximal ideals M, N in a semiring A, there are two elements $x \in M, y \in N$ such that xy is contained in the intersection of all maximal ideals of A, A is called normal.

It is known that A is normal, if and only if \mathcal{M} is a normal space (see W. Slowikowski and W. Zawadowski [6]).

Therefore we have

Theorem 6. If, for any element a of A, there is an element b such that $\Gamma_a = A_b$, then A is normal.

Theorem 7. If any Γ_a is closed of \mathcal{M}_r of a positive semiring A, then A is normal.

In our later paper, we shall investigate the ideal structure of semiring and general theory of topological semiring.
References

