82. *Studies on Chrysanthemic Acid. IV. Synthesis of Chrysanthemumdicarboxylic Acid from Chrysanthemic Acid*

By Masanao MATSUI, Masateru MIYANO, and Kyōhei YAMASHITA

Faculty of Agriculture, University of Tokyo

(Comm. by T. YABUTA, M.J.A., May 15, 1956)

Chrysanthemumdicarboxylic acid (I) is an acidic component of pyrethrins II and cinerin II which are two constituents of natural pyrethrins occurring in pyrethrum flowers, *Chrysanthemum cinerariae-folium*. Natural chrysanthemumdicarboxylic acid is the d-trans isomer of the structure (I). Racemic trans-chrysanthemumdicarboxylic acid was synthesized recently by Harper and Sleep,1' and by Inouye, Takeshita, and Ohno2' by the method which is shown here:

\[
\begin{align*}
\text{CH}_3\text{CHBrCOOC}_2\text{H}_5 & \xrightarrow{\text{Zn}} \text{CH}_3\text{C} = \text{CH} - \text{CH} = \text{C} \text{CH}_3 \\
\text{CH}_3\text{C} = \text{CHCHO} & \xrightarrow{\text{N}_2\text{CHCOOC}_2\text{H}_5} \text{CH}_3\text{C} = \text{CH} - \text{CH} = \text{C} \text{CH}_3 \\
\text{CH}_3\text{C} = \text{CHCOOC}_2\text{H}_5 & \xrightarrow{\text{Ag}_2\text{O}} \text{CH}_3\text{C} = \text{CHCOOR} \\
\text{CH}_3\text{C} = \text{CHCOOR} & \xrightarrow{\text{NaOH}} \text{CH}_3\text{C} = \text{CHCOOH}
\end{align*}
\]

The d-trans-chrysanthemumdicarboxylic acid was obtained by Inouye et al.3' by resolving dl-trans-acid with (−)-α-phenylethylamine, but the details have not been published.

The present authors have synthesized dl-cis-, dl-trans-, and d-trans-chrysanthemumdicarboxylic acids via a different route. Our method is as follows:

\[
\begin{align*}
\text{CH}_3\text{C} = \text{CHCH} = \text{C} \text{CH}_3 & \xrightarrow{\text{SeO}_2} \text{CH}_3\text{C} = \text{CHCH} = \text{C} \text{CHO} \\
\text{CH}_3\text{C} = \text{CHCOOR} & \xrightarrow{\text{Ag}_2\text{O}} \text{CH}_3\text{C} = \text{CHCOOR} \\
\text{CH}_3\text{C} = \text{CHCOOR} & \xrightarrow{\text{NaOH}} \text{CH}_3\text{C} = \text{CHCOOH}
\end{align*}
\]

Experimental*)

1) dl-cis-Chrysanthemumdicarboxylic acid

Methyl cis-chrysanthemate1' (10 g) in 50 ml of dioxane was refluxed for one hour with 9 g of selenium dioxide. Separation of solution from precipitated selenium and distillation and redistillation

*) All melting points are uncorrected.
afforded 6 g of the desired aldehydic ester (III, R = CH₃) boiling at 140-145°C/17 mm nD 1.4994, which is thought to be a mixture of two stereoisomers. Analysis: C, 66.8; H, 8.4%; Calculated for C₇H₁₆O₂: C, 67.3; H, 8.1%. 2,4-Dinitrophenylhydrazone was prepared and recrystallized from ethyl alcohol, forming scarlet crystals, of m.p. 192°. Analysis: C, 54.0; H, 5.5; N, 15.0%; Calculated for C₁₇H₂₅O₆N₄: C, 54.2; H, 5.3; N, 14.9%.

The aldehydic ester (5 g) was stirred for 30 min at 70° in 140 ml of 5% sodium hydroxide solution with silver oxide which was freshly prepared from 7 g of silver nitrate and sodium hydroxide solution. The solution was separated from silver, acidified with 40 g of 25% sulfuric acid and left standing in a refrigerator. dl-cis-Chrysanthemum-dicarboxylic acid which precipitated was collected and washed with water. Recrystallization from aqueous ethyl alcohol using a small amount of active carbon, afforded 3.5 g of colorless dl-cis-chrysanthemum dicarboxylic acid melting at 204°. Analysis: C, 60.9; H, 7.2%; Calculated for C₁₀H₁₄O₄: C, 60.6; H, 7.1%. By ozonolysis dl-cis-caronic acid, m.p. 175°, was obtained. Additional dl-cis-chrysanthemum-dicarboxylic acid, less pure in quality, was obtained by condensation of mother liquors.

2) dl-trans-Chrysanthemum-dicarboxylic acid

Methyl trans-chrysanthemate (10 g)⁴⁵ in 50 ml of dioxane was refluxed for 1 hour with 7.3 g of selenium dioxide. Separation of the solution from precipitated selenium, distillation, and redistillation afforded the desired aldehydic ester (III, R = CH₃) (6.5 g) boiling at 135-145°C/11 mm, nD 1.4956 the middle distillate of which is analysed as C, 67.1; H, 8.1%; Calculated for C₇H₁₆O₂: C, 67.3; H, 8.1%. 2,4-Dinitrophenylhydrazone, recrystallized from alcohol, formed scarlet needles, m.p. 157°. Analysis: C, 54.1; H, 5.5; N, 15.1%; Calculated for C₁₇H₂₅O₆N₄: C, 54.2; H, 5.3; N, 14.9%.

The aldehydic ester (6 g) was stirred for 30 min at 70° in 150 ml of 4% aqueous sodium hydroxide solution with silver oxide which had been freshly prepared from 8 g of silver nitrate and sodium hydroxide solution. Separation from silver and acidification with sulfuric acid afforded dl-trans-chrysanthemum dicarboxylic acid which precipitated in the aqueous solution. Pure dl-trans-chrysanthemum dicarboxylic acid (3.5 g), melting at 200°, was obtained by recrystallization from aqueous ethyl alcohol using active carbon. Analysis: C, 60.8; H, 6.9%; Calculated for C₁₀H₁₄O₄: C, 60.6; H, 7.1%. By ozonolysis, dl-trans-caronic acid, m.p. 212°, was obtained. Some less pure dl-trans-chrysanthemum dicarboxylic acid (0.9 g) was obtained from the mother liquors by ether extraction.
3) \textit{d-trans-Chrysanthemum dicarboxylic acid (natural pyrethric acid)}

Methyl \textit{d-trans-chrysanthemate} (17 g), which was obtained from free acid6 and diazomethane, was refluxed for 1 hour in 50 ml of dioxane with 10 g of selenium dioxide. The subsequent procedures, which were identical with those described above, afforded 3.5 g of recovered starting ester boiling at 85-130°/10 mm and 10 g of aldehydic ester (III, R=CH\textsubscript{3}), \textit{n\textsubscript{D}}20 1.4970 which is thought to be a mixture of two stereoisomers. Analysis: C, 67.1; H, 7.6\%; Calculated for C\textsubscript{11}H\textsubscript{16}O\textsubscript{3}: C, 67.3; H, 8.1\%. 2,4-Dinitrophenylhydrazone was produced as scarlet needles, and melted at 116° after recrystallization from alcohol. Analysis: C, 54.0; H, 5.6; N, 14.9\%; Calculated for C\textsubscript{17}H\textsubscript{20}O\textsubscript{6}N\textsubscript{4}: C, 54.2; H, 5.3; N, 14.9\%. The aldehydic ester (3 g) was oxidized in 100 ml of 6\% aqueous sodium hydroxide solution with silver oxide which was freshly prepared from 6 g of silver nitrate under the same conditions as described for the preparation of \textit{dl-trans-chrysanthemum dicarboxylic acid}. The pure \textit{d-trans-chrysanthemum dicarboxylic acid} was obtained as colorless needles (1.2 g) after recrystallization from water, m.p. 163-164°, \([\alpha]_{D}^{20}+72.0\), (c, 1.987 in methyl alcohol); It was found to be identical with the natural acid by mixed melting point determination.

Using free \textit{dl-trans-chrysanthemic acid}, selenium dioxide oxidation followed by silver oxide oxidation, was performed by the procedure already described, but the result was not so satisfactory. The yield of \textit{dl-trans-chrysanthemum dicarboxylic acid} was small (2 g of chrysanthemum dicarboxylic acid from 30 g of chrysanthemic acid).

The authors express their thanks to Prof. Yusuke Sumiki and Dr. Ryō Yamamoto for their interest in this work, and they are also indebted to the Sumitomo Chem. Co. Ltd. and the Daidō Jochūgiku Co. Ltd. for kindly supplying materials for the study.

\textbf{References}