17. On Hardy and Littlewood’s Theorem

By Kenji YANO

Department of Mathematics, Nara Women’s University, Nara, Japan

(Comm. by Z. SUETUNA, M.J.A., Feb. 12, 1957)

1. Let \(f(x) \) be an \(L \)-integrable function with period \(2\pi \), and its Fourier series be

\[
1 \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right).
\]

A. Zygmund [1] has shown the following

Theorem Z. If \(f(x) \) belongs to Lip \(\alpha \) where \(0 < \alpha \leq 1 \), then the series (1) is uniformly summable \((C, -\alpha + \delta) \) to \(f(x) \) for every \(\delta > 0 \).

Later, Hardy and Littlewood [2] showed the following

Theorem H.L. If \(f(x) \) belongs to Lip \((\alpha, p) \) where \(0 < \alpha \leq 1 \) and \(\alpha p > 1 \), i.e.

\[
\left(\int_0^{2\pi} |f(x+h)-f(x)|^p \, dx \right)^{1/p} = O(h^\alpha)
\]
as \(h \to 0 \), then the series (1) is uniformly summable \((C, -\alpha + \delta) \) to \(f(x) \) for every \(\delta > 0 \).

In this paper we shall improve the above theorem as follows:

Theorem. If \(f(x) \) is continuous in \((0, 2\pi) \), and belongs to Lip \((\alpha, 1/\alpha) \) where \(0 < \alpha \leq 1 \), i.e.

\[
\int_0^{2\pi} |f(x+h)-f(x)|^{1/\alpha} \, dx = O(h)
\]
as \(h \to 0 \), then the series (1) is uniformly summable \((C, -\alpha + \delta) \) to \(f(x) \) for every \(\delta > 0 \).

2. The proof\(^*)\) of our theorem is as follows. Let

\[
\varphi(t) = \varphi_\alpha(t) = f(x+t) + f(x-t) - 2f(x),
\]

then we have

\[
\varphi(t) \to 0 \text{ as } t \to 0 \text{ uniformly in } 0 \leq x \leq 2\pi,
\]
since \(f \) is continuous.

We denote the \(n \)-th \((C, \gamma)\) mean of the series (1) by \(\sigma_\alpha^n(x) \), then

\[
\sigma_\alpha^n(x) - f(x) = \frac{1}{\pi} \int_0^{2\pi} \varphi(t)K_\alpha^{-n}(t) \, dt
\]

\[
= \frac{1}{\pi} \int_0^{\pi/n} \frac{1}{\sin t} \int_{K/n}^\pi = I_1 + I_2
\]
say, where \(K_\alpha^n(t) \) is the \(n \)-th \((C, \gamma)\) Féjer kernel and

\[
|K_\alpha^{-n}(t)| \leq \frac{n}{1-\alpha} + \frac{1}{2} \text{ for } 0 \leq t \leq \pi,
\]

\(^*)\) The method of this proof has been suggested to me by Prof. G. Sunouchi.
and

\[K_n^{-\alpha}(t) = \Re(e^{int}/A_n^{-\alpha}(1-e^{-it})^{1-\alpha}) + O(1/nt^2) \]
for \(0 < t \leq \pi \).

By (2) and (3) it holds

\[|I_1| < \varepsilon_n K \]
uniformly concerning \(x \), where \(\varepsilon_n > 0 \) and \(\varepsilon_n \to 0 \). And we see easily that, by (4), (2) and boundedness of \(f \),

\[I_2 = \Re\left(\frac{1}{2\pi A_n^{-\alpha}} \int_{\pi/n}^{\pi} \frac{\varphi(t) - \varphi(t + \pi/n)}{(1-e^{-it})^{1-\alpha}} e^{int} \, dt \right) + O(1/K^{1-\alpha}), \]

where \(O \) is uniform concerning \(x \).

Replacing \(-\alpha \) by \(-\alpha + \delta \) we have

\[|\sigma_n^{-\alpha+\delta}(x) - f(x)| < C_1 n^{1-\delta} \int_{\pi/n}^{\pi} |\varphi(t) - \varphi(t + \pi/n)| \, dt + C_2/K^{1-\alpha} + \varepsilon_n K, \]

where, and in succession, \(C \)'s are absolutely positive constants, not depending on \(x \).

First suppose that \(\alpha < 1 \), then since \(f \in \text{Lip}(\alpha, 1/\alpha) \) we have

\[n^{1-\delta} \int_{\pi/n}^{\pi} |\varphi(t) - \varphi(t + \pi/n)| \, dt \]
\[\leq n^{1-\delta} \left(\int_{0}^{\pi} |\varphi(t) - \varphi(t + \pi/n)|^{1/\delta} \, dt \right) \left(\int_{\pi/n}^{\pi} (1/t^{1-\alpha+\delta})^{1/(1-\delta)} \, dt \right)^{1-\alpha} \]
\[\leq C_3 n^{1-\delta}(1/n^\delta)(n/K)^{\delta} = C_3/K^{\delta}. \]

In the case \(\alpha = 1 \), since \(f \in \text{Lip}(1, 1) \),

\[n^{1-\delta} \int_{\pi/n}^{\pi} |\varphi(t) - \varphi(t + \pi/n)| \, dt \]
\[\leq n^{1-\delta}(n/K)^{\delta} \int_{0}^{\pi} |\varphi(t) - \varphi(t + \pi/n)| \, dt \]
\[\leq C_4 n^{1-\delta}(n/K)^{\delta}(1/n) = C_4/K^{\delta}. \]

Thus we have from (5)

\[|\sigma_n^{-\alpha+\delta}(x) - f(x)| < C_5 K^{\delta} + C_2/K^{1-\alpha} + \varepsilon_n K, \]

With \(n \to \infty \) and then \(K \to \infty \) we get the desired result.

References
