139. On the Cohomology Groups of \(\mathbb{p} \)-adic Number Fields

By Hideo Kuniyoshi
Mathematical Institute, Tohoku University
(Comm. by K. Shoda, M.I.A., Nov. 12, 1958)

In the present note we shall study the cohomology groups of the ring of all \(\mathbb{p} \)-integers of a \(\mathbb{p} \)-adic field.

Let \(K \) be a \(\mathbb{p} \)-adic number field and let \(L \) be a finite separable extension field over \(K \). More generally, let \(K \) be a complete field by a discrete valuation and let \(L \) be a finite separable extension field over \(K \) with separable residue class field. Let \(R \) and \(A \) be the rings of all \(\mathbb{p} \)-integers of \(K \) and \(L \), respectively. Then \(A \) has a minimal basis over \(R \), i.e.

\[
A = R + R\theta + \cdots + R\theta^{n-1},
\]

where \(1, \theta, \ldots, \theta^{n-1} \) are linearly independent over \(R \) [1]. Let \(f(x) = 0 \) be the equation of \(\theta \) in \(R \).

We shall consider \(A \) as an algebra over \(R \) and construct a \(\Lambda^* \)-projective resolution over \(A \) which is suitable for our purpose.

Let

\[
f(x) = (x-\theta)g(x), \quad g(x) = x^{n-1} + \left(\sum_{j=0}^{n-2} \theta^j x^{n-2-j} \right)
\]

be the decomposition of \(f(x) \) in \(A \). We put

\[
g_0(\theta) = \sum_{i,j} b_{ij} \theta^i \otimes \theta^j \quad \text{and} \quad \Delta \theta = \theta \otimes 1 - 1 \otimes \theta
\]

in \(\Lambda^* = A \otimes_R A \).

Lemma

Let \(\sum \lambda \otimes \mu \) be any element in \(\Lambda^* \). Then

\[
(\sum \lambda \otimes \mu)(\theta \otimes 1 - 1 \otimes \theta) = 0 \quad \text{if and only if} \quad \sum \lambda \otimes \mu \in \Lambda^* \cdot g_0(\theta);
\]

\[
(\sum \lambda \otimes \mu) \cdot g_0(\theta) = 0 \quad \text{if and only if} \quad \sum \lambda \otimes \mu \in \Lambda^* (\theta \otimes 1 - 1 \otimes \theta).
\]

Proof. Since we have a ring isomorphism

\[
\Lambda \otimes_R A \cong A[x]/(f(x)),
\]

\[
\theta \otimes 1 - 1 \otimes \theta \leftrightarrow x - \theta \quad \text{mod} \quad (f(x)),
\]

\[
g_0(\theta) \leftrightarrow g(x) \quad \text{mod} \quad (f(x)),
\]

we shall calculate in the right hand side. We take polynomials of degree less than \(n \) as the uniquely determined representatives of the classes mod \(f(x) \). If \((x-\theta)h(x) \equiv 0 \) mod \(f(x) \), deg \(h(x) \leq n-1 \), then dividing \(h(x) \) by \(g(x) \) we have \(h(x) = \alpha g(x) + s(x) \), deg \(s(x) \leq n-2 \); so \(s(x)(x-\theta) \equiv 0 \) mod \(f(x) \). Therefore \(s(x) = 0 \), \(h(x) = \alpha g(x) \). Similarly, if \(g(x)h(x) \equiv 0 \) mod \(f(x) \), then \(h(x) = (x-\theta)h_0(x) \).

1) Since \(A \) is commutative, \(A^* = A \) and we shall drop the sign \(\ast \).
The kernel of the augmentation \(\varepsilon : \mathcal{A}^e \to A \), \(\varepsilon(\lambda \otimes \mu) = \lambda \mu \) is \(\mathcal{A}'(\theta \otimes 1 - 1 \otimes \theta) \).

Proof. Since \(A \) is commutative, \(\varepsilon \) is a ring homomorphism. So that \(\mathcal{A}'(\theta \otimes 1 - 1 \otimes \theta) \) is contained in the kernel of \(\varepsilon \). Conversely, if
\[
\varepsilon(\sum_{i,j} c_{ij} \theta^i \otimes \theta^j) = 0,
\]
then from
\[
\sum_{i,j} c_{ij} \theta^i \otimes \theta^j = 0
\]
we have \(\varepsilon((\sum c_{ij} \theta^{i+j}) \otimes 1) = 0 \), which proves the assertion.

Now we consider the following \(\mathcal{A}^e \)-resolution over \(A \):
\[
\cdots \xrightarrow{d_4} \mathcal{A}^e \xrightarrow{d_3} \mathcal{A}^e \xrightarrow{d_2} \mathcal{A}^e \xrightarrow{d_1} \mathcal{A}^e \xrightarrow{\varepsilon} A \longrightarrow 0
\]
where \(\varepsilon : \mathcal{A}^e \to A \), \(\varepsilon(\sum \lambda \otimes \mu) = \sum \lambda \mu \).

This is \(\mathcal{A}^e \)-free and, by the above lemma, acyclic.

To calculate \(H^n(A, A) \) and \(H_n(A, A) \) for any \(\mathcal{A}^e \) module \(A \), we consider the complex
\[
\cdots \xleftarrow{\delta_i} \text{Hom}_{\mathcal{A}^e}(A^e, A) \xrightarrow{\delta_i} \xrightarrow{\delta_i} \text{Hom}_{\mathcal{A}^e}(A^e, A)
\]
where \(\delta_i \) and \(\delta_i \) are induced homomorphisms of \(\delta_i \). Considering the isomorphisms
\[
\text{Hom}_{\mathcal{A}^e}(A^e, A) \cong A, \quad A \otimes_{\mathcal{A}^e} A^e \cong A,
\]
we may translate \(\delta_i \) and \(\delta_i \) into the endomorphisms of \(A \)
\[
\delta_{2r+1}(a) = a \theta - \theta a, \quad \delta_{2r+1}(a) = \theta a - a \theta,
\]
for \(a \in A \). Thus we have

Theorem
\[
H^{2r+1}(A, A) \cong A g_{q_{2r+1}}(A^e, A) \quad H^{2r+2}(A, A) \cong A_{q_{2r+1}}(A^e, A),
\]
for \(r \geq 0 \), where
\[
A^e = \{ a \in A | \square a = 0 \}, \quad A^e = \{ \square a | a \in A \}
\]
for any two sided \(A \) module \(A \) (considered as left \(\mathcal{A}^e \) module).

Corollary
\[
H^{n+2}(A, A) \cong H^n(A, A)
\]
for \(n \geq 1 \).

Theorem
If \(\theta a = a \theta \) for any \(a \) in \(A \), then
\[
H^{2r+1}(A, A) \cong H_{2r+2}(A, A) \cong A_{q_{2r+1}}(A^e, A),
\]
for \(r \geq 0 \).
Proof. In this case \(g_e(\theta) \cdot a = g(\theta)a \) and
\[
g(\theta) = (\theta - \theta') \cdots (\theta - \theta^{n-1}) = f'(\theta).
\]

The corollary of this note may be extended to the global case. Let \(K \) and \(L \) be the algebraic number fields, \(R \) and \(A \) the rings of all integers of \(K \) and \(L \) respectively. Then for any \(A \)-finitely generated module \(A \) we have
\[
H_{n+2}(A, A) \cong H_n(A, A)
\]
\[
H_{n+2}(A, A) = H_n(A, A)
\]
for \(n \geq 1 \). We may prove it by reducing it to the \(p \)-component and by using the above corollary.

References