102. On Compactness of Weak Topologies

By Hidegoro NAKANO

Let R be a space and a_i ($\lambda \in \Lambda$) a system of mappings of R into topological spaces S_i with neighbourhood systems \mathcal{N}_i ($\lambda \in \Lambda$). Concerning the weak topology of R by a_i ($\lambda \in \Lambda$), i.e. the weakest topology of R for which all a_i ($\lambda \in \Lambda$) are continuous, we have (H. Nakano: Topology and Linear Topological Spaces, Tokyo (1951), §19, Theorem 4. This book will be denoted by TLTS):

Theorem 1. If all S_i ($\lambda \in \Lambda$) are compact Hausdorff spaces, then, in order that the weak topology of R be compact, it is necessary and sufficient that for any system of points $a_i \in S_i$ ($\lambda \in \Lambda$) subject to the condition

$$\bigcap_{\lambda \in \Lambda} a_i^{-1}(U_{\lambda}) \neq \emptyset$$

for every finite number of open sets $a_i \in U_{\lambda}, \lambda \in \Lambda$ ($\nu = 1, 2, \cdots, n$), we can find a point $x \in R$ for which $a_i(x) = a_i$ for every $\lambda \in \Lambda$.

In the sequel, we consider generalization of this theorem in the case where S_i ($\lambda \in \Lambda$) are merely compact.

Theorem 2. If all S_i ($\lambda \in \Lambda$) are compact and for any system of points $a_i \in S_i$ ($\lambda \in \Lambda$) subject to the condition (F), we can find a point $x \in R$ for which $a_i(x) \in \{a_i\}^-$ for every $\lambda \in \Lambda$, then the weak topology of R is compact.

Proof. Let K be a maximal system of sets of R subject to the condition (I) $\bigcap_{\lambda \in \Lambda} a_i^{-1}(K) \neq \emptyset$ for every finite number of sets $K_{\nu} \in \mathcal{K}$ ($\nu = 1, 2, \cdots, n$). We see easily then that $A \cap K \neq \emptyset$ for all $K \in \mathcal{K}$ implies $A \in \mathcal{K}$, and $L, K \in \mathcal{K}$ implies $L \cap K \in \mathcal{K}$. For any $\lambda \in \Lambda$, we have obviously $\bigcap_{\nu \in \nu} a_i(K_{\nu}) \neq \emptyset$ for every finite number of sets $K_{\nu} \in \mathcal{K}$ ($\nu = 1, 2, \cdots, n$), and hence $\bigcap_{\nu \in \nu} a_i(K) = \emptyset$, because S_i is compact by assumption. For a point $a_i \in \bigcap_{\nu \in \nu} a_i(K)$, we have

$$a_i^{-1}(U) \in \mathcal{K} \quad \text{for} \quad a_i \in U \in \mathcal{N}_i,$$

because for $a_i \in U \in \mathcal{N}_i$, $K \in \mathcal{K}$ we have obviously

$$a_i(K \cap a_i^{-1}(U)) = a_i(K) \cap U \neq \emptyset$$

which yields $K \cap a_i^{-1}(U) \neq \emptyset$. Therefore the system of points a_i ($\lambda \in \Lambda$) satisfies the condition (F), and hence we can find a point $x \in R$ by assumption such that $a_i(x) \in \{a_i\}^-$ for every $\lambda \in \Lambda$. For such a point $x \in R$, we have obviously $a_i(x) \in \bigcap_{\nu \in \nu} a_i(K_{\nu})^-$, and consequently $a_i^{-1}(U) \in \mathcal{K}$ for $a_i(x) \in U \in \mathcal{N}_i$, as proved just above. Therefore we have
On Compactness of Weak Topologies

\[\bigcap_{\nu=1}^{n} a_{\nu}^{-1}(U_{\nu}) \subseteq R \] for \(a_{\nu}(x) \in U_{\nu} \in R_{\nu} \) \((\nu = 1, 2, \ldots, n)\).

As all \(\bigcap_{\nu=1}^{n} a_{\nu}^{-1}(U_{\nu}) \) for every finite number of sets \(U_{\nu} \in R_{\nu} \) constitute a neighbourhood system of the weak topology of \(R \), we conclude that \(x \in K^{-} \) for all \(K \in R \). For any system of closed sets \(R \) subject to the condition (I), we can find by the maximal theorem a maximal system \(R \) subject to the condition (I) such that \(R \supseteq R \), and for such \(R \) we have

\[\bigcap_{K \in R} K^{-} \supseteq \bigcap_{K \in R} K^{-} = \phi, \]

as proved just above. Thus the weak topology of \(R \) is compact.

Let \(S \) be a topological space with topology \(\mathcal{T} \). For every point \(a \in S \), we define a closed set \(a^{*} \) as

\[a^{*} = \bigcap_{U \in \mathcal{T}} U^{-}. \]

With this definition we have obviously: \(\{ a \}^{-} \subseteq a^{*} \), and \(b \in a^{*} \) implies \(a \in b^{*} \).

Theorem 3. If the weak topology of \(R \) by \(a_{\lambda} (\lambda \in A) \) is compact, then for any system of points \(a_{\lambda} \in S_{\lambda} (\lambda \in A) \) subject to the condition (F) we can find a point \(x \in R \) for which \(a_{\lambda}(x) \in a_{\lambda}^{*} \) for all \(\lambda \in A \).

Proof. For a system of points \(a_{\lambda} \in S_{\lambda} (\lambda \in A) \) subject to the condition (F), we have

\[\bigcap_{\lambda \in A} \bigcap_{a_{\lambda} \in u \in R} a_{\lambda}^{-1}(U)^{-} = \phi, \]

because \(R \) is compact by assumption. For a point \(x \in R \) such that \(x \in a_{\lambda}^{-1}(U)^{-} \), we have \(a_{\lambda}(x) \in U^{-} \) for all \(a_{\lambda} \in U \in R_{\lambda} \), as \(a_{\lambda}^{-1}(U)^{-} \subseteq a_{\lambda}^{-1}(U)^{-} \) (cf. TLTS §16, Theorem 3), we have \(a_{\lambda}(x) \in U^{-} \) for all \(a_{\lambda} \in U \in R_{\lambda} \), and hence \(a_{\lambda}(x) \in a_{\lambda}^{*} \) for all \(\lambda \in A \).

Finally we consider the topologies of \(S \) for which \(\{ a \}^{-} = a^{*} \) for every point \(a \in S \). We can prove easily:

Lemma. \(\{ a \}^{-} \ni b \) implies always \(\{ b \}^{-} \ni a \), if and only if \(a \in U \in \mathcal{T} \) implies \(\{ a \}^{-} \subseteq U \).

If \(\{ a \}^{-} = a^{*} \) for every point \(a \in S \), then for any point \(b \in \{ a \}^{-} \) we can find \(U \in \mathcal{T} \) such that \(a \in U \) and \(b \in U^{-} \), and hence by Lemma \(\{ a \}^{-} \subseteq U \) and \(\{ b \}^{-} \subseteq U^{-} \). Thus we have

Theorem 4. We have \(\{ a \}^{-} = a^{*} \) for every point \(a \in S \), if and only if the partition space of \(S \) by the partition \(\{ a \}^{-} (a \in S) \) is a Hausdorff space.

Remark 1. The condition about point system in Theorem 2 is not necessary. Because, let \(\{ a, b \} \) be a topological space with the topology: \(\{ a, b \}, \{ a \}, \phi \). The point set \(\{ a \} \) is obviously compact by the relative topology, but \(a \in \{ b \}^{-} = \{ b \} \).

Remark 2. The condition in Theorem 3 is not sufficient. Because, let \(\{ 0, 1, 2, \ldots \} \) be a topological space with a neighbourhood system: \(\{ 0, 1, 2, \ldots \}, \{ n \} (n=1, 2, \ldots) \). This space is obviously compact. It is clear that a point set \(\{ 1, 2, \ldots \} \) is not compact by the relative topology but we have \(\{ 0 \} \in \{ 0, 1, 2, \ldots \} \) for every \(n=1, 2, \ldots \).