7. On Transformation of the Seifert Invariants

By Joseph Weier

The theory of continuous transformations of manifolds shows preference to the case that \(\dim X = \dim Y \) or \(\dim X > \dim Y \) where \(X \) is mapped into \(Y \). The reason is that every continuous mapping of an \(m \)-sphere into an \(n \)-sphere with \(m < n \) is homotopic to zero. We will cast a look on the case \(\dim X < \dim Y \).

1. Suppose \(z, z' \) are two disjoint zero-divisors in the compact manifold \(X \) such that \(\dim z + \dim z' \geq (\dim X) - 1 \). Then the pair \((z, z')\) determines [1] a rational interlacing cycle, \(\sigma(z, z') \), as follows. Let \(a, b \) be the smallest positive integers satisfying \(az \sim 0 \) and \(bz' \sim 0 \), and let \(A, B \) be two finite integral chains in \(X \) such that \(\partial A = az \) and \(\partial B = bz' \). Then, if \(f \) denotes the usual intersection function,

\[
\frac{1}{a} f(A, z') = \frac{1}{ab} f(A, \partial B) = \pm \frac{1}{ab} f(\partial A, B) = \pm \frac{1}{b} f(az, B) = \pm \frac{1}{b} f(z, B).
\]

One thus obtains an expression that does not depend on \(A \). Now

\[
\sigma(z, z') = \frac{1}{a} f(A, z')
\]

is Seifert’s interlacing cycle.

2. Let \(2 \leq m < n \) be integers, let \(M \) be an \(m \)-dimensional and \(N \) an \(n \)-dimensional oriented differentiable compact manifold, moreover \(f : M \to N \) a continuous mapping. Let \(P, Q, R, S \) be pairwise disjoint oriented differentiable compact manifolds in \(N \) such that

\[
\begin{align*}
p &\geq n - m, & q &\geq n - m, & r &\geq n - m, & s &\geq n - m, \\
p + q + r + s &\leq 4n - m - 3, & p + q &\geq 2n - m,
\end{align*}
\]

where \(p, q, r, s \) are the dimensions of \(P, Q, R, S \) respectively. For instance setting

\[
p = q = r = n - 1 \quad \text{and} \quad s = n - m,
\]

one confirms at once that the above dimensional suppositions are fulfilled.

The algebraic inverse of \(P, Q, R, S \) under \(f \), defined for instance in [4], will be denoted by \(z_p, z_q, z_r, z_s \) respectively. Geometrically one can suppose [5] that the inverses of \(P, Q, R, S \) are differentiable manifolds. Then \(z_p, z_q, z_r, z_s \) is an integral cycle of dimension \(p - (n - m), q - (n - m), r - (n - m), \) and \(s - (n - m) \) respectively. Let the manifolds \(P, Q, R, S \) be defined in such a way that \(z_p, z_q, z_r, z_s \) are zero-divisors. That is always possible as one easily confirms. Let \(z_T \) denote the above defined Seifert interlacing cycle, \(\sigma(z_p, z_q) \). By

\[
\dim z_T = (\dim z_p) + 1 + \dim z_q - \dim M
\]

\[
= (p - n + m) + 1 + (q - n + m) - m = p + q - 2n + m + 1
\]
and the supposition \(p + q \geq 2n - m \), it follows that \(\dim z_T \geq 1 \).

Let \(a, b, c \) be the smallest positive integers such that \(cz_T \) is an integral cycle and that moreover
\[
az_S \sim 0 \quad \text{and} \quad bz_S \sim 0.
\]
Let \(A, B \) be chains in \(M \) satisfying \(\partial A = az_S \) and \(\partial B = bz_S \). Furthermore let \(Z_1, Z_2, \ldots \) be a base of the integral \((r+1)\)-cycles in \(M \) and \(Z'_1, Z'_2, \ldots \) be a base of the integral \((s+1)\)-cycles in \(M \). Now \(f \) being as above the intersection function, we set
\[
\zeta_i = f(A + Z_i, cz_T), \quad \zeta_{ij} = f(\zeta_{ti}, B + Z'_j).
\]
Then
\[
\dim \zeta_{ij} = \dim \zeta_i + (\dim z_S) + 1 - \dim M
\]
\[
= (\dim z_S) + 1 + \dim z_T - \dim M + (\dim z) + 1 - \dim M
\]
\[
= (\dim z_S) + 1 + (\dim z_T) + 1 + \dim z_T - \dim M - \dim M
\]
\[
= \dim z_T + \dim z_S + 3 - 3 \dim M
\]
\[
= p + q + r + s - 4n - m + 3 - 3m = (4n - m - 3) - 4n + m + 3 = 0.
\]
Thus the \(\zeta_{ij} \) are integers. The matrix consisting of these numbers is invariant under deformation of \(f \). In order that \(f \) is an essential map, it suffices that at least one \(\zeta_{ij} \) is not zero. To the matrix \((\zeta_{ij}) \) there corresponds a comatrix that one obtains by projecting our results in the cohomology rings of \(M \) and \(N \), see for instance [2, 3].

3. Let \(r \) be a positive integer \(\leq m - 1 \) such that every integral homology class of dimension \(n-r-1 \) and likewise every such class of dimension \(n-m+r \) of \(N \) permits a realization 3 by an oriented differentiable compact manifold. Now let the \((n-r-1)\)-manifolds \(A_1, A_2, \ldots \) and the \((n-m+r)\)-manifolds \(B_1, B_2, \ldots \) be bases of the integral \((n-r-1)\)-cycles and the \((n-m+r)\)-cycles of \(N \). Let \(z_i, z'_i \) be the algebraic inverse of \(A_i \) and \(B_i \) respectively. Suppose that \(A_i \) and \(B_i \) are ordered in such a way that \(z_i \) is zero-divisor for \(i = 1, 2, \ldots, \alpha \) and only for these \(i \)'s, and that \(z'_i \) is zero-divisor for \(i = 1, 2, \ldots, \beta \) and only for these \(i \)'s. For all pairs \((i, j)\) satisfying \(i \leq \alpha \) and \(j \leq \beta \), now let \(\sigma_{ij} \) be Seifert's interlacing number of \((z_i, z'_j)\).

Then one again obtains a characteristic matrix \((\sigma_{ij}) \) of \(f \) that possesses similar properties for the matrix of section 2.

References