5. **On a Boundary Theorem on Open Riemann Surfaces**

By Yoshikatsu YAMAMURA

Department of Mathematics, Tokyo University of Education

(Comm. by Kinjirō KUNUGI, M.J.A., Jan. 12, 1963)

1. **Introduction.** Let U be the class of Riemann surfaces on which there exist the Green function and at least a bounded minimal positive harmonic function (C. Constantinescu and A. Cornea [1]) and O_l be the class of Riemann surfaces on which there exist the Green function and no non-constant Lindelöfian meromorphic function (M. Heins [3]). Let R be an open Riemann surface and Q be a subregion of the Riemann surface R whose relative boundary ∂Q with respect to R consists of at most an enumerable number of analytic curves clustering nowhere in R. If there exists no non-constant single-valued bounded harmonic function in Q which vanishes continuously on ∂Q, we say that Q belongs to SO_{HB}. The following theorem was proved by many authors (see [2], [4], [6], and [8]).

Let R be an open Riemann surface belonging to the class U and Q be a subregion of R which satisfies the above boundary condition and does not belong to SO_{HB}, then Q belongs to O_l.

In the present paper we shall give another simple proof of this assertion with aid of the notion of thinness in Martin’s space [5] (which is given by Martin’s compactification of an open Riemann surface), introduced by L. Naïm [7].

2. **Preliminaries.** We shall introduce the notion of thinness and some useful results for our purpose.

Let R be an open Riemann surface and \hat{R} be Martin’s space associated with R. We say that $\Delta^a=\hat{R}-R$ is the Martin boundary of R. Now let $K_x(y)$ be a kernel function in the sense of Martin, that is $K_x(y)=\frac{G(x, y)}{G(x, y_0)}$ for $x\in\hat{R}-\{y_0\}$, $y\in R$ with a fixed point y_0 in R. Then x_0 is said to be a minimal point of Δ^a if $K_{x_0}(y)$ is a minimal positive harmonic function in R in the sense of Martin and x_0 is said to be a bounded minimal point of Δ^a if, in addition, $K_{x_0}(y)$ is bounded in R.

Let m be a positive measure in R, then a K-potential with respect to the measure m in R is defined in $\hat{R}-\{y_0\}$ by

$$U(x)=\int K_x(y) \, dm(y).$$

Definition. A subset E of R is said to be thin at a point x_0 in
$\hat{\mathcal{R}}-\{y_0\}$ if x_0 is not a limit point of E or otherwise if there is a K-potential such that

$$U(x_0) < \liminf_{x \to x_0, x \in \hat{\mathcal{R}}} U(x).$$

Then we can immediately see that the union of a finite number of the thin sets at x_0 is also thin.

Naïm [7] proved the following:

(2.1) \mathcal{R} is not thin at any minimal point x_0 of $\mathcal{A}^\mathcal{R}$ and vice versa (Theorem 3).

(2.2) A set E of \mathcal{R} is thin at a minimal point x_0, if and only if the extremization $\mathcal{C}_{K_{x_0}}^E$ of the kernel function $K_{x_0}(y)$ over $\mathcal{R}-E$ does not conserve this function, that is,

$$\mathcal{C}_{K_{x_0}}^E(y) \equiv K_{x_0}(y)$$

(Theorem 5).

Here the notion of the extremization is the following:

The extremization \mathcal{C}_v^E of the positive superharmonic function v over the set E is the least positive superharmonic function which dominates v in $\mathcal{R}-E$ except for a set of capacity zero.

(2.3) Let u be a harmonic function in \mathcal{R}, Ω be an open set of \mathcal{R} and Ω^* be a boundary of Ω with respect to Martin’s space \mathcal{R}. Let u be the function on Ω^* which coincides with u on $\Omega \cap \mathcal{R}$ and 0 on $\Omega \cap \mathcal{A}^\mathcal{R}$ and $H_\Omega^0(y)$ be the solution of Dirichlet problem with respect to Ω in the sense of Brelot.

Let x_0 be a point of Ω being minimal in $\mathcal{A}^\mathcal{R}$. If $u=K_{x_0}(y)$ is different from $H_\Omega^0(y)$, then the difference $u(y)-H_\Omega^0(y)$ is a minimal positive harmonic function in Ω (Theorem 12).

On the other hand, Heins [3] proved the following assertion:

Let f be a single-valued meromorphic function in \mathcal{R}, and \mathcal{C} be a subset of the w-sphere. For each open set δ of the w-sphere, we shall denote the greatest harmonic minorant of the extremization of the constant 1 over $\mathcal{R}-f^{-1}(\delta)$ by $\mathcal{E}_{1}^{\mathcal{R}-f^{-1}(\delta)}(y)$ and the lower envelope of the family $\{\mathcal{E}_{1}^{\mathcal{R}-f^{-1}(\delta)}(y)\}_{\delta} \subset B_\delta$.

(2.4) If f is Lindelöfian, then $\text{Cap } \mathcal{C}=0$ implies $B_\delta=0$.

3. Theorems. Using these results we shall prove the following theorem:

Theorem 1. Let \mathcal{R} be an open Riemann surface belonging to the class U, then \mathcal{R} belongs to the class O_L.

Proof. Suppose that there exists an open Riemann surface \mathcal{R} which belongs to the class U and does not belong to the class O_L. Let f be a non constant Lindelöfian meromorphic function in \mathcal{R} and x_0 be a bounded minimal point of the Martin boundary $\mathcal{A}^{\mathcal{R}}$.

On the other hand we can consider as \mathcal{C} a single point w of the
w-sphere and as \(\delta \) an open neighborhood \(V(w) \) of the \(w \), so \(B_\delta \) coincides with the lower envelope of the family \(\{ \mathcal{E}_{R-f^{-1}(V(w))}(y) \} \).

Now we see that
\[
\mathcal{E}_{R-f^{-1}(V(w))}(y) \geq k \cdot \mathcal{E}_{K_{x_0}}(y),
\]
where \(k = 1/\sup_{R} K_{x_0}(y) > 0 \), since \(K_{x_0}(y) \) is bounded in \(R \).

Then there exists a small neighborhood \(V(w) \) of \(w \) such that
\[
\mathcal{E}_{R-f^{-1}(V(w))}(y) \equiv K_{x_0}(y),
\]
therefore \(f^{-1}(V(w)) \) is thin at \(x_0 \) by (2.2).

In fact if we assume that for any \(V(w) \)
\[
\mathcal{E}_{R-f^{-1}(V(w))}(y) \equiv K_{x_0}(y)
\]
by the definition of the greatest harmonic minorant, we have
\[
\mathcal{E}_{R-f^{-1}(V(w))}(y) \geq k \cdot \mathcal{E}_{K_{x_0}}(y) \equiv K_{x_0}(y)
\]
and
\[
\mathcal{E}_{R-f^{-1}(V(w))}(y) \geq k \cdot K_{x_0}(y) = k > 0 \quad \text{for any } V(w).
\]

For a small positive number \(\varepsilon \) \((\varepsilon < k)\) there exists a small \(V(w) \) such that
\[
\mathcal{E}_{R-f^{-1}(V(w))}(y_0) < \varepsilon,
\]
since \(B_{1/\varepsilon} = 0 \) by (2.4). This is impossible.

Thus for any point \(w \) of the \(w \)-sphere we can choose an open neighborhood \(V(w) \) of \(w \) such that \(f^{-1}(V(w)) \) is thin at \(x_0 \).

The family \(\{ V(w) \}_{w \in w \text{-sphere}} \) is an open covering of the \(w \)-sphere and we can choose a finite number of \(V(w_i) \) \((i = 1, \ldots, n)\) such that \(\{ V(w_i) \}_{i=1}^n \) is a covering of the \(w \)-sphere by the compactness of this.

Every \(f^{-1}(V(w_i)) \) is thin at \(x_0 \), so \(\bigcup_{i=1}^n f^{-1}(V(w_i)) \) is also thin at the point \(x_0 \) of \(\Delta^R \). But this set coincides with \(R \). This contradicts (2.1) and leads to our assertion.

As a consequence of Theorem 1 we have

Theorem 2. Let \(R \) be an open Riemann surface belonging to the class \(U \) and \(\Omega \) be a subregion of \(R \) such that \(R-\Omega \) is thin at some bounded minimal point \(x_0 \) of the Martin boundary \(\Delta^R \), then \(\Omega \) belongs to the class \(O_L \).

Proof. We know that \(H_{K_{x_0}}^g(y) \equiv \mathcal{E}_{K_{x_0}}(y) \) in \(\Omega \). Since \(R-\Omega \) is thin at \(x_0 \), \(\mathcal{E}_{K_{x_0}}(y) \equiv K_{x_0}(y) \).

Then by the property of the extremization we see that \(K_{x_0}(y) - H_{K_{x_0}}^g(y) > 0 \) in \(\Omega \), and by (2.3) \(K_{x_0}(y) - H_{K_{x_0}}^g(y) > 0 \) is a bounded minimal harmonic function in \(\Omega \). This shows us that \(\Omega \) belongs to the class \(U \). We conclude by Theorem 1 that \(\Omega \) belongs to the class \(O_L \).

References

