§ 1. Introduction. Let \(\Omega \) be a compact oriented Riemannian \(n \)-space with smooth boundary \(\Gamma \). Let \(A \) be a linear partial differential operator on \(\Omega \) of order \(2m \). We assume \(A \) is strongly elliptic, that is, there is a constant \(C > 0 \) such that, for any \(x \) in \(\Omega \) and for any non zero vector \(\xi \) cotangent to \(\Omega \) at \(x \), we have
\[
C^{-1} |\xi|^{2m} \leq \text{Re} \sigma_{2m}(A)(x, \xi) \leq C |\xi|^{2m},
\]
where \(\sigma_{2m}(A) \) is the principal symbol of \(A \). We consider normal systems \(\{B_r\}_{r \in R} \), \(R = (r_1, r_2, \ldots, r_m) \), of \(m \) boundary operators \(B_{r_j} \). \(r_j \) is the order of \(B_{r_j} \). We assume \(r_j < 2m \) for any \(j = 0, 1, \ldots, m \). The problem to be considered is

Problem 1. Characterize those couples \(\{A, \{B_r\}_{r \in R}\} \) which give, with some constants \(1/2 > \varepsilon \geq 0, C, \beta > 0 \), the estimate
\[
(1) \quad \text{Re}((A + \beta)u, u)_{L^2(\Omega)} \geq C \|u\|_{H^{m-1/2}(\Omega)}^2
\]
for all \(u \) in \(H^m_\varepsilon(\Omega) = \{u \in H^m(\Omega) ; B_r u \mid_{r=0} = 0, \text{for any } r \in R\} \).

Here \(H^s(\Omega) \) denotes the Sobolev space on \(\Omega \) of order \(s \), \(\| \cdot \|_{H^s(\Omega)} \) is its norm and \((\cdot, \cdot)_{L^2(\Omega)} \) is the inner product in \(L^2(\Omega) \).

If \(1/2 > \varepsilon \geq 0 \), the problem was treated in far stronger form in [3]. In this note we concern with the case \(\varepsilon = 1/2 \). So the problem is

Problem 1'. Characterize those couples \(\{A, \{B_r\}_{r \in R}\} \) which give, with some constants \(C, \beta > 0 \), the estimate
\[
(2) \quad \text{Re}((A + \beta)u, u)_{L^2(\Omega)} \geq C \|u\|_{H^{m-1/2}(\Omega)}^2
\]
for all \(u \) in \(H^m(\Omega) \).

We assume the following hypothesis (H) that was proved in the case \(0 \leq \varepsilon < 1/2 \) necessary for the estimate (1) to hold. (See [3] and [6].)

(H) The set \(R \) coincides with one of the \(R_j \)'s defined by \(R_j = (0, 1, \ldots, m-j-1, m, m+1, \ldots, m+j-1) \), \(1 \leq j \leq m \). Under this hypothesis we give a necessary and sufficient condition for the estimate (2) to hold.

Proofs are omitted. Detailed discussions will be published elsewhere.*

§ 2. Results. We denote by \(\nu \) the interior unit normal to \(\Gamma \) and

* This work was done during the author's stay in Paris. He expresses his hearty thanks to Professor J. L. Lions for his constant encouragement.
by D_n the normal derivative $-i \frac{\partial}{\partial \nu}$ multiplied by $-i = -\sqrt{-1}$. S_j is the complement of R_j in the set \{0, 1, 2, \ldots, 2m-1\}. Then B_r, $r \in R_j$ can be written as

$$B_r = D_n - \sum_{p \leq r} B_{r-p} D_n,$$

where B_{r-p} is a pseudo-differential operator on Γ of order $\leq r - p$. Let $A = (1 - \Delta')^{1/2}$ where Δ' is the Laplace-Beltrami operator associated with the metric on Γ. Then A^k is an isomorphism from $H^k(\Gamma)$ to $H^{k-\kappa}(\Gamma)$. A^* denotes the formal adjoint of A.

We choose and fix α so large that we can solve uniquely the problem:

$$(A + A^* + 2\alpha) v = 0$$

and obtain the estimates, for any $s \in \mathbb{R}$,

$$C^{-1} \sum_{k=rrc-j}^{m-1} \| \phi_k \|^2_{H^{s-1/2} (\Gamma)} \leq \| v \|^2_{H^s(\Omega)} \leq C \sum_{k=rrc-j}^{m-1} \| \phi_k \|^2_{H^{s-1/2} (\Gamma)}.$$

Here and hereafter we denote by C different constants >0 in different occurrences.

Now we fix $B = \{B_r\}_{r \in R_j}$. We decompose any u in $H^m_\mathcal{B}(\Omega)$ into sum of two functions v and w:

$$u = v + w,$$

where

$$(A + A^* + 2\beta) v = 0 \text{ on } \Omega, \quad D_n^k v|_r = D_n^k u|_r, \quad 0 \leq k \leq m - 1,$$

and $D_n^j w|_r = 0$, $0 \leq k \leq m - 1$. This implies that $D_n^k v|_r = 0$ for $0 \leq k \leq m - j - 1$. We set $D_n^k u|_r = A^k \phi_k$, $m - j \leq k \leq m - 1$. Let $H^m_\mathcal{B}(\Omega)$ be the closure of $H^m_\mathcal{B}(\Omega)$ in $H^m(\Omega)$. Then $H^m_\mathcal{B}(\Omega) = \{ u \in H^m(\Omega) : D_n^k u|_r = 0, 0 \leq k \leq m - j - 1 \}$. The decomposition (6) is a topological decomposition of $H^m(\Omega)$. (See [5].) Now we take any u in $H^m_\mathcal{B}(\Omega)$. Then using the boundary condition $B_r u|_r = 0$ and the decomposition (6), we can find pseudo-differential operators $H_{p,q}$ on Γ of order $2m - 1$, $m - j \leq p$, $q \leq m - 1$, such that

$$\text{Re}((A + A^* + 2\beta) u, w)_{L^2(\Gamma)} = \text{Re}((A + A^* + 2\beta) w, w)_{L^2(\Gamma)} + \sum_{p,q=rrc-j}^{m-1} (H_{p,q}(\beta) \varphi_q, \varphi_p)_{L^2(\Gamma)}.$$

(See [2].)

Let T be the 1 dimensional circle $= \mathbb{R} / 2\pi \mathbb{Z}$. We consider the elliptic operator $\tilde{A} = A + D_n^m$, $s \in T$, on $\Omega \times T$ and boundary operators $\{B_r\}_{r \in R_j}$ on $\Gamma \times T$. $H^m_\mathcal{B}(\Omega \times T)$ denotes the closure in $H^m(\Omega \times T)$ of $H^m_\mathcal{B}(\Omega \times T) = \{ f \in H^m(\Omega \times T) : B_r f|_{\Gamma \times T} = 0, r \in R_j \}$. Decomposition corresponding to (6) holds for functions in $H^m_\mathcal{B}(\Omega \times T)$, that is, for any f in $H^m_\mathcal{B}(\Omega \times T)$,
\[f = g + h, \quad (\tilde{A} + \tilde{A}^* + 2\hat{\beta})g = 0 \text{ on } \Omega \times T, \]
\[D_m^k f |_{\Gamma \times T} = D_m^k f |_{\Gamma \times T}, \quad 0 \leq k \leq m - 1.\]

We set \(D_m^k f |_{\Gamma \times T} = (\tilde{A})^k \phi_k, \) \(m - j \leq k \leq m - 1, \) where \(\tilde{A} = (1 - A^* + D^2)^{1/2}. \) Just as we did above, we can find pseudo-differential operators \(\tilde{H}_{pq}(\beta) \) on \(\Gamma \times T \) of order \(2m - 1 \) such that for any \(f \) in \(H^m_{\beta}(\Omega \times T) \)

\[
\text{Re}((\tilde{A} + \beta)f, f)_{L^2(\Omega \times T)} = \text{Re}((\tilde{A} + \beta)h, h)_{L^2(\Omega \times T)} + \sum_{p,q=m-j}^{m-1} (\tilde{H}_{pq}(\beta) \phi_q, \phi_p)_{L^2(\Gamma \times T)}.
\]

Our first result is

Theorem 1. Each of the following four propositions are equivalent to the other:

1. There are some \(\beta_1, C_1 > 0 \) such that the estimate (2) holds for any \(u \in H^m_{\beta}(\Omega). \)
2. There are some \(\beta_2, C_2 > 0, \) such that the estimate

\[
\text{Re}((A + \beta)f, f)_{L^2(\Omega \times T)} \geq C_2 \| f \|_{H^{m-1/2}(\Omega \times T)}
\]

holds for any \(f \) in \(H^m_{\beta}(\Omega \times T). \)
3. There are some constants \(\beta_3, C_3 > 0 \) such that the estimate

\[
\sum_{p,q=m-j}^{m-1} (H_{pq}(\beta) \varphi_q, \varphi_p)_{L^2(\Gamma \times T)} \geq C_3 \sum_{p=m-j}^{m-1} \| \varphi_p \|_{H^{m-1/2}(\Gamma)}^2
\]

holds for any \(p, q \in (m-j, \cdots, m-1) \in H^m_{\beta}(\Omega \times T). \)
4. There are some constants \(\gamma, \beta_4, C_4 > 0 \) such that the estimate

\[
\sum_{p,q=m-j}^{m-1} (H_{pq}(\gamma) \varphi_q, \varphi_p)_{L^2(\Gamma \times T)} \geq \beta_4 \sum_{p=m-j}^{m-1} \| \varphi_p \|_{H^{m-1/2}(\Gamma \times T)}^2
\]

holds for any \(\varphi_{m-j}, \varphi_{m-j+1}, \cdots, \varphi_{m-1} \in H^m_{\beta}(\Omega \times T). \)

Remark 1. In the case \(0 < s < 1/2 \) the estimate holds with some \(\beta, C > 0, \) if and only if, with some \(\gamma, \beta, C > 0, \) the estimate

\[
\sum_{p,q=m-j}^{m-1} (H_{pq}(\gamma) \varphi_q, \varphi_p)_{L^2(\Gamma \times T)} \geq C \sum_{p=m-j}^{m-1} \| \varphi_p \|_{H^{m-1/2}(\Gamma \times T)}^2
\]

holds for any \(\varphi_{m-j}, \cdots, \varphi_{m-1} \in H^m_{\beta}(\Omega \times T). \)

We consider pseudo-differential operators \(\tilde{H}_{pq}(\gamma), m-j \leq p, q \leq m-1, \) of order \(2m - 1 \) defined on \(\Gamma \times T \) and satisfying the property (iv) of Theorem 1.

The property (iv) of Theorem 1 can be localized.

Theorem 2. Assume that there exists a family of finite number of real functions \(\{ \mu_k(x) \}_{k=1}^{\infty} \) in \(\mathcal{D} \) (\(\Gamma \times T \)) satisfying

1. \(\sum \mu_k(x, s) s^k = 1, \)
2. for any \(\phi_{m-j}, \phi_{m-j+1}, \cdots, \phi_{m-1} \in \mathcal{D} \) (\(\Gamma \times T \)) and for any \(k \) the following estimate holds:

\[
\sum_{p,q=m-j}^{m-1} (H_{pq}(\gamma) \varphi_q, \varphi_p)_{L^2(\Gamma \times T)} \geq C \sum_{p=m-j}^{m-1} \| \varphi_p \|_{H^{m-1/2}(\Gamma \times T)}^2
\]
Then for any \(\phi_{m-j}, \phi_{m-j+1}, \ldots, \phi_{m-1} \in \mathcal{D}(\Gamma \times T) \) the estimate (13) holds with some \(\beta, C_4, \gamma > 0 \).

Let \(\Omega \) be any open set (not necessarily connected) in \(\mathbb{R}^n \). Let \(Q_{rs}, \quad m-j \leq r, s \leq m-1, \) be pseudo-differential operators of order 1 defined in \(\Omega \). \(q_{rs}(x, \xi) = \sum_{j=0}^\infty q_{rs}^j(x, \xi) \) denote the symbol of \(Q_{rs} \). We assume the matrix \((q_{rs}^j(x, \xi))_{rs} \) of the principal symbols of \(Q_{rs} \) is Hermitian. Then we have

Theorem 3. The following two properties are equivalent:

(i) For any compact set \(K \) in \(\Omega \), there are constants \(C_0 \) and \(C_1 > 0 \) such that, for any \(\phi_{m-j}, \phi_{m-j+1}, \ldots, \phi_{m-1} \in \mathcal{D}(K) \),

\[
\sum_{r,s=m-j}^{m-1} \left(Q_{rs} \phi_r \phi_s L^2(\Omega) + C_1 \sum_{r=m-j}^{m-1} \| \phi_r \|_{H^{-1/2}(\Omega)}^2 \right) \geq C_0 \sum_{r=m-j}^{m-1} \| \phi_r \|_{H^0(\Omega)}^2.
\]

(ii) For any compact set \(K \) in \(\Omega \), there exist constant \(C > 0 \), integer \(N > 0 \) and a function \(\varepsilon(\xi) \) with \(\varepsilon(\xi) \to 0 \) when \(|\xi| \to \infty \) such that, for any \(x \in K, \phi_{m-j}, \ldots, \phi_{m-1} \in \mathcal{D}(\mathbb{R}^n) \),

\[
\sum_{r,s=m-j}^{m-1} \sum_{|\xi|+|\beta| \leq 2} \left| \varepsilon(\xi) \right| \left| q_{rs}^j(x, \xi) \int_{\mathbb{R}^n} (iD_y)^\beta \phi_s(y) (-iy)^\beta \psi_r(y) dy \right|^2
\]

\[
+ \sum_{r=m-j}^{m-1} \int_{\mathbb{R}^n} |D_y \phi_r(y)|^2 dy
\]

\[
\geq C \sum_{r=m-j}^{m-1} \left| \psi_r(y) \right|^2 dy,
\]

where \(q_{rs}^j(x, \xi) = D_x^r D_y^s q(x, \xi) \).

Remark 2. The estimate (14) holds for any \(\phi_{m-j}, \ldots, \phi_{m-1} \in H^{m-1/2}(\Gamma) \) if and only if the matrix defined by the principal symbols \(\sigma_{m-j}(H_{pq}(B))(x, \xi) \) is uniformly positive definite. Thus we can prove the result in [3] without the assumption that \(\sigma_{2m}(A)(x, \xi) \) is real.

To prove Theorem 3 we use the following theorem which is interesting in itself.

Theorem 4. Let \(K \) be any compact set in an open set \(\Omega \) in \(\mathbb{R}^n \) and let \(P \) be a pseudo-differential operator of order \(\rho \) defined on \(\Omega \), whose symbol is denoted by \(p(x, \xi) \). Assume \(\varphi \in \mathcal{D}(\Omega) \) is identically 1 in some neighbourhood of \(K \). Then for any \(N > 0 \), there is a constant \(C > 0 \) such that for any \(x \in K, \xi \in \mathbb{R}^n \) with \(|\xi| \geq 1 \), and \(\phi, \varphi \in \mathcal{D}(\mathbb{R}^n) \),

\(\star \) During the preparation of this article the author had a chance to know that A. P. Calderón also had obtained, independently, a result similar to Theorem 4 in a little stronger form.
\[|\xi|^{n/2} \int \phi(y) (P \varphi v_2)(y) \varphi v_2(y) dy \]

\[- \sum_{|\alpha|, |\beta| < \alpha ! \beta !} c_{\alpha, \beta}(x, \xi) \int (y \zeta)^{\alpha} \varphi(y) (-iy)^{\beta} \varphi(y) dy \]

\[\leq C |\xi|^{-n/2} |\varphi(y)\|_{H^{N/2}} (1 + |y|)^{N} \| \phi \|_{H^{N/2}(\mathbb{R}^n)}, \]

where \(v_1(y) = \psi((y - x) |\xi|^{1/2}) e^{iy \cdot \zeta} \) and \(v_2(y) = \phi((y - x) |\xi|^{1/2}) e^{iy \cdot \zeta} \).

Proofs of Theorems 3 and 4 are omitted here. They are similar to the discussion in [4].

References

