203. **On Potent Rings. I**

By Hidetoshi Marubayashi
College of General Education, Osaka University

A ring \(R \) is said to be (right) potent iff every nonzero closed right ideal \(A \) of \(R \) is potent, that is, \(A^n \) is not zero for all positive integer \(n \). In [6], R. E. Johnson has investigated potent irreducible rings which are finite dimensional in the sense of Goldie [4], and obtained many interesting results. The aim of this paper is to generalize the Johnson’s work [6] to the case of the rings with infinite dimensions.

1. Definitions and notations.

Let \(R \) be an associative ring. A right ideal \(I \) of \(R \) is called closed if it has no proper essential extensions in \(R \) as right \(R \)-modules. Clearly the concept of closed right ideals of \(R \) coincides with the one of complemented right ideals in the sense of Goldie [4]. A right ideal \(E \) of \(R \) is called large if \(R \) is an essential extension of \(E \) (in symbols \(E \subsetneq R \)). A ring \(R \) is said to be (right) locally uniform if any nonzero right ideal of \(R \) contain a nonzero uniform right ideal. A right ideal \(A \) is uniform if \(A \) is an essential extension of every nonzero right ideal contained in \(A \). Clearly, if \(R \) is finite dimensional, then \(R \) is locally uniform. \(R \) is called countably dimensional if \(R \) has a direct sum of countable right ideals. The notation \(A'(A') \) is used for right (left) annihilator of a subset \(A \) of \(R \).

The set \(Z_r(R) = \{ x \in R | x' \text{ : large right ideal of } R \} \) is an ideal of the ring \(R \), which is called the right singular ideal. If \(Z_r(R) = 0 \), then the each right ideal \(A \) has a unique maximal essential extension \(A^* \) in \(R \). The set \(L_r^*(R) (= L_r^*) \) of closed right ideals is a complete complemented modular lattice under the inclusion. If \(\{ C_i | i \in I \} \) is any collection of closed right ideals of \(R \), then \(\bigcup_{i \in I} C_i = (\bigcap_{i \in I} C_i)^* \). \((J^*_r ; \cap, \cup) \) will denote the lattice of all annihilator right ideals of \(R \). Then it is easily seen that \(J^*_r \subseteq L^*_r \). We note that the lattice \(J^*_r \) is not usually a sublattice of \(L^*_r \), although intersections are set-theoretic in both lattices. For convenience, we let \(L^*_r = L^*_r \cap L_2 \) and \(J^*_r = J^*_r \cap L_2 \), where \(L_2 \) is the set of two-sided ideals of \(R \). Corresponding left properties of a ring \(R \) are indicated by replacing each “\(r \)” by an “\(l \)”. If \(R \) is right locally uniform, then \(L^*_r \) is an atomic lattice, and \(A \in L^*_r \) is an atom if and only if \(A \) is a closed uniform right ideal. Following R. E. Johnson we call

* Dedicated to Professor Keizo Asano for the celebration of his sixtieth birthday.
a ring R a (right) potent ring (P-ring) if every nonzero closed right ideal of R is potent. We say that uniform right ideals A and B are similar (in symbols; $A \sim B$) iff A and B contain mutually isomorphic nonzero right ideals A' and B' respectively. A ring R said to be (right) irreducible iff R is right locally uniform and $A \sim B$ for all uniform right ideals A and B of R. A right locally uniform irreducible ring with $Z_r(R) = 0$ is called here an I-ring. An I-ring which is also a P-ring will be called a PI-ring. We note that a ring R is a PI-ring if and only if R is a PI-ring in the sense of R. E. Johnson [6]. A ring R is said to be residue-finite if the following condition is satisfied:

The factor ring R/T is finite dimensional as a right R-module for any nonzero $T \in L^*_p$.

If R is finite dimensional, then evidently R is residue-finite. If R is a prime ring, then R is residue-finite, because $L^*_p = \{0, R\}$. A PI-ring which is countably dimensional will be called a CPI-ring. Let M be a right R-module. If M is an n-dimensional in the sense of Goldie, then we write $n = \dim_R M$.

Concerning the terminologies we refer to [4] and [6].

2. Residue-finite CPI-rings.

Theorem 1. If R is a residue-finite CPI-ring, then the following properties hold:

1. $L^*_p = \bigcup_{A \in L^*_p : \text{atom}} A$.
2. L^*_p is a chain and there exist the following two types:
 - (A): $R = T_0 \supset T_1 \supset T_2 \supset \cdots$ and $\bigcup_{p=0}^{\infty} T_p = 0$.
 - (B): There exists an integer p such that $R = T_0 \supset T_1 \supset T_2 \supset \cdots \supset T_p \supset T_{p+1} = 0$.
3. For each nonzero $T_0 \in L^*_p$, there exists an independent set $\{A_1, \ldots, A_n\}$ of atoms of L^*_p such that $A_1 \cup \cdots \cup A_n \cup T_p = T_{p-1}$ and $(A_1 \cup \cdots \cup A_n) \cap T_p = 0$.
4. If A is an atom of L^*_p, then $A \subseteq T_p$ and $A \subseteq T_{p+1}$ if and only if $A' = T_{p+1}$.

The lattices J^*_p and J^*_p are dual isomorphic under the corresponding $A \rightarrow A^t, A \in J^*_p$. Hence if J^*_p consists of $R = T_0 \supset T_1 \supset T_2 \supset \cdots, \bigcap_{p=0}^{\infty} T_p = 0$ or $R = T_0 \supset T_1 \supset T_2 \supset \cdots \supset T_p \supset T_{p+1} = 0$, then J^*_p consists of $0 = T_0 \subset T_1 \subset T_2 \subset \cdots \subset T_{p+1} = R$, respectively.

Lemma 1. Let $J^*_2 = \{T_0, T_1, T_2, \ldots\}$. Then:

1. For each $T_p \neq R$, there exists a potent atom $B \in J^*_p$ such that $B \subseteq T_{p+1}$ and $B \cap T_p = 0$.
2. If B is a potent atom of J^*_p, then $B \subseteq T_{p+1}$ and $B \subseteq T_p$ if and only if $B' = T_p$.

By [5], the lattice J^*_p is an upper semi-modular lattice. Hence for each $B \in J^*_p$ such that the interval $[0, B]$ is a finite length, we can define, by Theorem 14 of [1], the dimension of B as the maximal length of chains.
between 0 and B. If the dimension of B is n, then we write \(n = \dim B \).

Lemma 2. (1) \(\dim_{\mathbb{R}}(R / T_p) = d_p \) if and only if \(\dim T_p = d_p \).

(2) For each nonzero \(T_p \), there exists an independent set \(\{B_1, \ldots, B_{d_p - 1 + 1}\} \) of potent atoms of \(J^* \) such that
\[
T_p = T_{p-1} \cup (B_{d_p - 1 + 1} \cup \cdots \cup B_{d_p}) \quad \text{and} \quad (B_{d_p - 1 + 1} \cup \cdots \cup B_{d_p}) \cap T_{p-1} = 0.
\]

Let \(\dim_{\mathbb{R}}(R / T_p) = d_p \) for each nonzero \(T_p \in \mathcal{L}_2 \). Then evidently \(\dim_{\mathbb{R}}(T_{p-1} / T_p) = d_p - d_{p-1} \). If \(R \) satisfies (A) in Theorem 1, we shall call the ring \(R \) of type (A), and \((d_1, d_2 - d_1, \ldots, d_p - d_{p-1}, \ldots) \) is called a set of block numbers of \(R \).

If \(R \) satisfies (B) in Theorem 1, we shall call the ring \(R \) is of type (B), and \((d_1, d_2 - d_1, \ldots, d_p - d_{p-1}, \infty) \) is called a set of block numbers of \(R \).

Let \(R \) be a ring with \(Z(R) = 0 \). As is well known the maximal right quotient ring \(\hat{R} \) of \(R \) is right \(R \)-injective and is a right self-injective (von Neumann) regular ring (see [2]). Let \(L \) be an atomic lattice with 1. A set \(\{a_i\} \) of atoms of \(L \) is independent iff \(a_i \cap (\bigcup_{j \neq i} a_j) = 0 \) for each \(i \). An independent set \(\{a_i\} \) of atoms of \(L \) is called a basis of \(L \) if \(\bigcup_i a_i = 1 \).

In order to make further progress we need the following definition:

Let \(R \) be a residue-finite PI-ring. \(R \) is said to be complemented with respect to \(\mathcal{L}_2 \) if there exists a set \(\{B_i\} \) of potent atoms of \(J^* \) such that

(a) \(\{B_i\} \) satisfies the condition (2) in Lemma 2, and

(b) For each nonzero \(T_p \), \(T_p \cup T_p^* = R \) and \(T_p \cap T_p^* = 0 \), where \(T_p^* = (\bigcup_{j > d_p} B_j)^* \). In addition, if \(\bigcup_p T_p^* = R \), then \(R \) is said to be s-complemented with respect to \(\mathcal{L}_2 \).

The following are examples of rings which are s-complemented with respect to \(\mathcal{L}_2 \):

(i) \(R \) is an FPI-ring in the sense of [6].

(ii) Let \(R \) be a residue-finite CPI-ring and let \(\hat{R} \) be the maximal right quotient ring of \(R \). If \(\hat{R} \) is a left quotient ring of \(R \), then \(R \) is s-complemented with respect to \(\mathcal{L}_2 \) (see [7]).

(iii) Let \(F \) be a division ring. If \(A \) and \(B \) are subsets of \(F \), then we denote by \(AB^{-1} \) the set \(\{ab^{-1} | a \in A, b \in B, b \neq 0\} \). Let \(\omega \) be the countable ordinal number. We denote by \((F)_\omega \) the ring of all column-finite \(\omega \times \omega \) matrices over \(F \). Let \(F_{i,j} \) be additive subgroups of \(F \) such that \(F_{i,j} \subseteq F_{k,l} \) if \(i, j, k = 1, 2, \ldots \). Let \(S = \{a \in (F)_\omega | a = (a_{i,j}), a_{i,j} \in F_{i,j}\} \). Clearly \(S \) is a subring of \(R \). The ring \(S \) will be called a T-ring (triangular-block matrix ring) with type (A) in \((F)_\omega \) iff there exist integers \(0 = d_0 < d_1 < d_2 < \cdots < d_\eta < \cdots \) such that \(F_{i,j} \neq 0 \) iff \(i > d_p \) and \(d_p < j \leq d_{p+1}(p = 0, 1, 2, \ldots) \). If \(F_{i,j} \neq 0 \) = \(F \) and \(F_{i,j} F_{i,j}^* = F(2 \leq j < k) \), then \(S \) is s-complemented with respect to \(\mathcal{L}_2 \) and a residue-finite CPI-ring.
with type (A) (see [7], Theorem 2).

Let \(R \) be \(s \)-complemented with respect to \(L^*_2 \) with type (A) and let \(\{B_i\} \) be potent atoms of \(J^*_i \) which satisfies the conditions (a) and (b). Now we set \(A_i=\left(\bigcup_{j\neq i} B_j\right)^r \). Then the following lemma holds.

Lemma 3. (1) \(\{A_i\} \) and \(\{B_i\} \) are independent atoms of \(L^*_2 \) and \(J^*_i \) respectively.

(2) For each \(p \), \(T_{p^{-1}}=T_p \cup (A_{d_p+1} \cup \cdots \cup A_{d_p}) \) and \(T_p \cap (A_{d_p+1} \cup \cdots \cup A_{d_p})=\emptyset \).

(3) \(\bigcup A_i=R \).

(4) \(B_i=\left(\bigcup_{j\neq i} A_j\right)^i \).

Now, we can summarize the above-mentioned results as follows:

Theorem 2. Let \(R \) be a CPI-ring with type (A) and let \((d_1, d_2, \ldots , d_n, \cdots)\) be the set of block numbers of \(R \). If \(R \) is \(s \)-complemented with respect to \(L^*_2 \), then there exist potent atomic bases \(\{B_1, B_2, \ldots , B_n, \cdots\} \) for \(J^*_2 \) and \(\{A_1, A_2, \ldots , A_n, \cdots\} \) for \(L^*_2 \) such that:

(1) \(A_i=\left(\bigcup_{j\neq i} B_j\right)^r \) and \(B_i=\left(\bigcup_{j\neq i} A_j\right)^i \), \((i=1, 2, \cdots)\).

(2) \(J^*_2=L^*_2=\{A_i^{\geq i} \mid i=1, 2, \cdots\}, J^*_2=\{B_i^{\geq i} \mid i=1, 2, \cdots\} \).

(3) \(A_1^{\geq 1} \geq A_2^{\geq 2} \geq \cdots \geq A_i^{\geq i} \geq \cdots \), \(\bigcap_{n=1}^\infty A_n=\emptyset \) and \(0=B_1^{\geq 1} \leq B_2^{\geq 2} \leq \cdots \leq B_n^{\geq n} \leq \cdots \), \(\bigcup_{n=1}^\infty B_n=R \).

(4) \(A_i^{\geq i}=A_j^{\geq j} \) and \(B_i^{\geq i}=B_j^{\geq j} \) iff \(d_0+d_1+\cdots+d_p<i \) and \(j\leq d_0+d_1+\cdots+d_{p+1} \) for some \(p \), where \(d_0=0 \).

(5) \(A_i B_j \neq 0 \) iff \(i>d_0+\cdots+d_p \) and \(d_0+\cdots+d_p<j\leq d_0+\cdots+d_{p+1} \) for some \(p \).

References

