206. Remark on Fixed Point of k-regular Mappings

By Haruo Maki
Department of Mathematics, Wakayama University, Wakayama

The main purpose of this paper is to answer the question raised in [4]. The dilation D_k of Euclidean n-space \mathbb{R}^n defined by $x \mapsto kx$ for some $k \in (0, 1)$ can be extended uniquely to the n-sphere, $S^n = \mathbb{R}^n \cup \{\infty\}$. If h is a homeomorphism of S^n of the same topological type as D_k, then h is regular except at two points. Kérekjarto [6], Homma and Kinoshita [2] showed the converse for $n=2$, $n=3$ respectively. Husch [3] extended Homma and Kinoshita’s result for $n \geq 6$. He [4] considered the topological characterization of the dilation in a separable infinite dimensional Fréchet space E (i.e. in a separable infinite dimensional locally convex complete linear metric space).

In [4], Husch has the following theorems. Let h be a homeomorphism of E (with metric d) onto itself.

Theorem (Husch [4]). Suppose that h is k-regular at each point of E, $0 < k < 1$ (i.e. for each $\varepsilon > 0$, there exists $\delta > 0$ such that if $d(x, y) < \delta$, then $d(h^n(x), h^n(y)) < k^n \varepsilon$ for each integer n).

(1) ([4], Proposition 6, p. 4) h has at most one fixed point.

(2) ([4], Theorem 1, p. 2) If the fixed point set of h, $\text{Fix}(h)$, is not empty, then h has the topological type of a dilation D_k.

(3) ([4], Theorem 2, p. 2) If $\text{Fix}(h)$ is empty, then h has the topological type of a translation.

In this paper we prove the following:

Theorem 1. If h is k-regular at each point of E, $0 < k < 1$, then h has a unique fixed point.

Hence we can eliminate the hypothesis that $\text{Fix}(h)$ be a non empty set in Husch’s result (2).

Every separable infinite dimensional Fréchet space E is homeomorphic to the countable infinite product of lines [1]. Hence E is connected metric space. Thus we only show the following:

Lemma 2. Let h be a k-regular mapping, $(0 < k < 1)$, of a complete, connected metric space X onto itself. Then h has a unique fixed point.

Before starting the proof, we recall the following definitions and some properties [5]. Let h be a continuous mapping in a metric space X. If for each $\varepsilon > 0$, there exists $n \in 1^*$ (positive integers) such that $d(h^n(x), h^n(y)) < \varepsilon$ for all $m \geq n$,

\[d(h^n(x), h^n(y)) < \varepsilon \quad \text{for all } m \geq n, \]
then x and y are said to be asymptotic under h. (Abbreviate $x \sim y$).
Then \sim is an equivalence relation on X. Let X_h be the set of all equivalence classes. \hat{x} denotes the equivalence class of $x \in X$. The induced mapping $\hat{h} : X_h \to X_h$ is well defined as follows. For each $\hat{x} \in X_h$, $\hat{h}(\hat{x}) = \hat{h}(x)$. Then we have the following theorems.

Theorem 3 (Kashiwagi and Maki [5], Theorem 12, p. 7). *Let X be a complete metric space. Then the continuous mapping h has a unique fixed point if and only if the induced mapping \hat{h} has a unique fixed point.*

Theorem 4 ([5], Theorem 13, p. 7). *Let all assumptions of Theorem 3 hold. If X_h is a singleton, then h has a unique fixed point.*

Proof of Lemma 2. Since h is k-regular at each point x, there exists a $\delta(x)$-neighbourhood $B_x(\delta(x))$, with center x and radius $\delta(x)$ such that

if $\forall y \in B_x(\delta(x))$, then $x \sim y$.

Let x be any point of X. By the above discussion, \hat{x} is open in X. And \hat{x} is not empty. Note that \hat{x} is a closed set in X. For suppose $\{x_n\}$ is a sequence in \hat{x} such that

$$x_n \to a$$

as $n \to +\infty$.

Since h is k-regular at a, then there exists an integer N such that

$$x_n \sim a \quad \text{for all } n > N. \quad x, x_n \in \hat{x} \text{ implies } x_n \sim x \quad \text{for } n.$$

Hence we have $x \sim a$, $a \in \hat{x}$. This implies \hat{x} is closed in X. Since X is connected, $X = \hat{x}$. Hence X_h is a singleton. With the use of Theorem 4, the proof is complete. Q.E.D.

Remark 1. Theorem 1 is the answer to the question raised in [4]. The hypothesis that $\text{Fix} (h)$ be empty can never be satisfied in Husch's result (3). Hence that lines should be deleted from the theorem (Theorem 2 [4]).

Now, suppose that there exists an everywhere dense subset Y of X. We have the following:

Theorem 5. *Let f be a k-regular mapping of a complete metric space X onto itself. If Y_f is a singleton, then f has a unique fixed point.*

Proof. We show that X_f is a singleton. Let x be any point of Y, y any point of $X - Y$. Then there exists a sequence $\{x_n\}$ of Y such that

$$\lim_{n \to \infty} x_n = y.$$

Since f is k-regular, $x_n \sim y$ for some integer n. Clearly $x_n \sim x$. Hence $x \sim y$ if $x \in Y$, $y \in X - Y$. Now let x, y be any points of $X - Y$. Then there exist the sequences $\{x_n\}$, $\{y_n\}$ such that

$$\lim_{n \to \infty} x_n = x \quad \text{and} \quad \lim_{n \to \infty} y_n = y.$$

Since x_n, $y_n \in Y$, $x \in X - Y$, then $x_n \sim x$ and $y_m \sim y$ for some integers n, m. Since Y_f is a singleton, we have $x \sim y$. This implies X_f is a
Remark 2. If one replaces the condition that f is k-regular with the condition that f is continuous, then the resulting proposition need not be true, as the following example shows. Define f on the interval $X=[-\sqrt{2},+\infty)$ as follows:

$$f(x)=\begin{cases} 2x+\sqrt{2} & \text{if } -\sqrt{2} \leq x \leq \sqrt{2}, \\ x/2+5/\sqrt{2} & \text{if } x > \sqrt{2}. \end{cases}$$

f is not k-regular, $0<k<1$, and Y_f is a singleton where $Y=Q \cap X$. But f has two fixed points.

In the end of this paper, we give another application of Theorem 4, which treat a subject of Kannan's fixed point theorem in metric space.

Theorem 6. Let X be a complete metric space. Let f be a continuous mapping of X into itself such that

$$d(f^n(x), f^{n+1}(x)) \leq \alpha d(x, f^n(x)) + \beta d(y, f^n(y)) + \gamma d(x, y)$$

where $x, y \in X$ and $0<\alpha+\beta+\gamma<1$, $0\leq \alpha$, $0\leq \beta<1$, $0\leq \gamma<1$. Then f has a unique fixed point.

Proof. Let x, y be any point of X. In order to complete the proof, we see $x \sim y$. For all n we have

$$d(f^n(x), f^{n+1}(x)) \leq \left(\frac{\alpha+\gamma}{1-\beta}\right)^n d(x, f^n(x)).$$

Hence we have

$$d(f^{n+1}(x), f^{n+1}(y)) \leq \alpha \left(\frac{\alpha+\gamma}{1-\beta}\right)^n d(x, f^n(x)) + \beta \left(\frac{\alpha+\gamma}{1-\beta}\right)^n d(y, f^n(y)) + \gamma d(f^n(x), f^{n}(y)).$$

By the induction,

$$d(f^{n+1}(x), f^{n+1}(y)) \leq \left(\sum_{i=0}^{n} \gamma^i \left(\frac{\alpha+\gamma}{1-\beta}\right)^{n-i}\right) \{\alpha d(x, f^n(x)) + \beta d(y, f^n(y))\} + \gamma^{n+1}d(x, y).$$

Let $B_n = \sum_{i=0}^{n} \gamma^i \left(\frac{\alpha+\gamma}{1-\beta}\right)^{n-i}$. We have $\lim_{n \to \infty} B_n = 0$. Therefore

$$d(f^n(x), f^n(y)) \to 0 \quad \text{as } n \to +\infty.$$

This implies that X_f is a singleton. By Theorem 4 the proof is complete.

Q.E.D.

Remark 3. By Theorem 6, we have the Banach's fixed point Theorem and Kannan's result [7].

Added in proof. Some changes need in Theorem 3 and Theorem 4. h has a unique fixed point \bar{x} with a Cauchy sequence $\{h^n(x)\}$, if and only if, h has a unique fixed point. However, we assume that there exists a Cauchy sequence $\{h^n(x)\}$ for some x. In this case, if X_h is a singleton, then h has a unique fixed point. Therefore, in this case
Theorem 1, Lemma 2 and Theorem 5 are valid. Thus Remark 1 and two lines (p. 925, lines 24, 25) in this paper, should be deleted.

References