148. Iterated Loop Spaces

By Yasutoshi Nomura
College of General Education, Osaka University
(Comm. by Kenjiro Shoda, M. J. A., Nov. 13, 1972)

The aim of this note is to give conditions under which a space or a map can be de-looped \(k\)-times up to homotopy. The duals to Theorems 1 and 2 have been obtained by Berstein-Ganea [2]. Our basic lemma (Lemma 1) allows us to overcome the difficulty which arises in dualizing Theorem 3.3 of T. Ganea [4], thereby obtaining a de-looping theorem for a homotopy \(\Omega^kS^k\)-space (see Theorem 4).

1. A basic lemma. First we set up some notation and conventions. The spaces we consider are supposed to have the based homotopy type of \(CW\)-complexes. We denote the loop and suspension functors by \(\Omega\) and \(S\). Given a map \(u : A \to B\), the fibre \(\{(a, \gamma) \in A \times B^I ; \gamma(0) = *, \gamma(1) = u(a)\}\) and the cofibre \(B \cup_u CA\) are denoted by \(E_u\) and \(C_u\) respectively. The identity maps \(\Omega^kX \to \Omega^kX\) and \(S^kX \to S^kX\) yield the canonical adjointness maps \(e_k : S^k\Omega^kX \to X\) and \(\eta_k : X \to \Omega^kS^kX\).

Now given a map \(f : \Omega X \to Y\), introduce the homotopy commutative diagram

\[
\begin{array}{ccc}
\Omega X & \xrightarrow{f} & Y \\
\alpha' \downarrow & & \\
E_{i} & \xrightarrow{i} & C_{f} \\
\beta' \downarrow & \alpha \downarrow & \\
\Omega X & \xrightarrow{\beta} & E_{i} \\
\eta_k \downarrow & \beta \downarrow & \\
\Omega X & \xrightarrow{\eta_k} & \Omega C_{i} \\
\end{array}
\]

in which the vertical maps are constructed as in p. 132 of [6] using the canonical homotopies, \(i\) and \(j\) are inclusions and \(q : C_f \to S\Omega X\) the map pinching \(Y\) to a point. Using the Blakers-Massey theorem (see e.g. Theorem 4.3 of [8]) we have

i) \((\beta \alpha) f \simeq \Omega j\),

ii) the construction of \(\beta \alpha\) is functorial,

iii) if \(f\) is \(m\)-connected, \(m \geq 1\), \(X\) is \(2\)-connected and \(Y\) is \((n-1)\)-connected, \(n \geq 1\), then \(\beta \alpha\) is \([m + \min(m, n)]\)-connected, \(j(m+1)\)-connected and \(C_{i} = \min(n, 2m+1)\)-connected.

Iterating the process for \(j\), we get

Lemma 1. If \(f : \Omega^kX \to Y\) is \(m\)-connected such that \(X\) is \((k+1)\)-
connected and Y is $(n-1)$-connected, $m \geq n > k-1 \geq 0$, then there exist an $(n+k-1)$-connected space Z and an $(m+n)$-connected map $g: Y \to \Omega^k Z$ such that gf is homotopic to a k-fold loop map. The construction of g is functorial. Further, if $h: Y \to \Omega^k V$ with $V(k+1)$-connected is a map such that hf can be de-looped k-times, then there exists a $\lambda: Z \to V$ with $(\Omega^k \lambda)g \simeq h$.

2. As an immediate consequence of Lemma 1 we obtain the following two theorems which are dual to Theorems 1.4 and 1.6 of [2], so the proofs are omitted.

Theorem 1. If X is an $(n-1)$-connected space with $\pi_i(X) = 0$ for $i \geq 3n$, $n \geq 2$, such that η has a homotopy retraction, then X is homotopy equivalent to a k-fold loop space.

Remark. Taking $k=1$ in Theorem 1, we recover Theorem C of P. J. Hilton [5].

Theorem 2. Let $\phi: \Omega^k A \to \Omega^k B$ be a homotopy $\Omega^k S^k$-map, i.e. $(\Omega^k \varepsilon_\phi)(\Omega^k S^k \phi) \simeq \phi(\Omega^k \varepsilon_\phi)$. If A is $(n-1)$-connected, $n > k + 1$, and B is a 1-connected space with $\pi_i(B) = 0$ for $i \geq 3n - 2k + 1$, then ϕ is de-looped k-times.

The following theorem extends Theorem 5 of [7].

Theorem 3. Suppose X and Y are n- and q-connected respectively, $k + 2 \leq n \leq q - 2$, such that $\pi_i(X) = 0$ if $i \geq 2n + 2 + k$ and $\pi_j(Y) = 0$ if $j \geq q + n + 2 - k$. Then $f: \Omega^k X \to \Omega^k Y$ is homotopic to k-fold loop map provided that E_f is of the same homotopy type as a k-fold loop space.

Proof. Denote by $p: \Omega^k E \to \Omega^k X$ the fibre of f. Since p is $(q-k)$-connected and since $\Omega^k X$ is $(n-k)$-connected, it follows from Lemma 1 that there is an $(n+q-2k+1)$-connected map $\eta: \Omega^k X \to \Omega^k Z$ such that $gp \simeq \Omega^k j$ for some $j: E \to Z$. Moreover, since $fp \simeq 0$ is de-looped k-times, Lemma 1 gives a map $\lambda: Z \to Y$ with $(\Omega^k \lambda)g \simeq f$. Killing the homotopy of Z in dimensions $\geq n + q - k + 2$, we get an $(n+q-k+2)$-connected inclusion $h: Z \subset W$, hence $h^*: [W, Y] \to [Z, Y]$ is onto. This gives rise to a map $\mu: W \to Y$ with $\mu h \simeq \lambda$. On the other hand, since $\varepsilon_\mu: S^k \Omega^k X \to X$ is $(2n+2-k)$-connected and since $\pi_i(Z) = 0$ for $2n + 2 - k \leq i \leq n + q - k + 1$, we see that $\varepsilon_\mu^*: [X, W] \to [S^k \Omega^k X, W]$ is onto, which yields a map $\nu: X \to W$ with $\nu \simeq \omega$ the adjoint of $(\Omega^k h)g$, whence $\Omega^k \nu \simeq (\Omega^k h)g$. Then $f \simeq \Omega^k (\mu)$ as desired.

3. Homotopy $\Omega^k S^k$-spaces. J. Beck [1] has shown that a $\Omega^k S^k$-space can always be de-looped k-times. We shall prove a theorem for a homotopy analogue (cf. Corollary 11.12 of [9]).

Lemma 2. Let

$$
\begin{array}{ccc}
X \xrightarrow{f} A & \Omega^k X \xrightarrow{\Omega^k f} \Omega^k A \\
\downarrow g & \downarrow \Omega^k g \\
B \xrightarrow{\nu} L & \Omega^k B \xrightarrow{\Omega^k \nu} L'
\end{array}
$$

where g is $(n+k-1)$-connected and ν is $(m+n)$-connected.
denote the weak pushout squares (i.e. $L = C_{f,q}$ in the notation of [8]) and let $\Psi : L' \to \Omega^p L$ be the canonical map. Suppose X is $(k+1)$-connected, $k \geq 1$. If f is p-connected and g is q-connected, $p \geq k+1, q \geq k+1$, then Ψ is $(p+q-2k+1)$-connected.

Corollary 1. Let $h : U \to V$ be a p-connected map with $(q-1)$-connected U, $q-1 \geq k+1, p \geq k+1$. Then the canonical map $\Psi : C_{g,\text{rel}} \to \Omega^q C_{g,\text{rel}}$ is $(p+q-2k+1)$-connected.

Lemma 3. Let $f : A \to B$ be a map and let $\eta_A : A \to \Omega^k S^k A$ and $\eta_B : B \to \Omega^k S^k B$ denote the adjointness maps. If f is m-connected, and if A and B are $(n-1)$-connected, $m \geq n \geq 1$, then the induced map $C_{\eta_A} \to C_{\eta_B}$ is $[n + \min(2n, m)]$-connected for $k \geq 2$ and $(n+m)$-connected for $k=1$.

Proof. Use Theorem 2.1 of Ganea [3], Corollary 1 and the relative Puppe sequences for $\Omega^{i'-i} A \to \Omega^{i'-i} A \to \Omega^{i'+1} A \to \Omega^{i'+1} A$ etc.

We say that X is a homotopy $\Omega^k S^k$-space (or homotopy $\Omega^k S^k$-algebra) if there is a homotopy retraction $r : \Omega^k S^k X \to X$ of η_k such that $r(\Omega^k S^k)$ is a homotopy $\Omega^k S^k$-space.

Theorem 4. Suppose X is an $(n-1)$-connected homotopy $\Omega^k S^k$-space, $n \geq 2$. If $\pi_i(X) = 0$ for $i \geq 4n+1$, then X has the homotopy type of a k-fold loop space.

Proof. Introduce the weak pushout squares

\[
\begin{array}{ccc}
S^k \Omega^k S^k X & \xrightarrow{\epsilon_k S^k} & S^k X \\
\downarrow r & & \downarrow i \\
S^k X & \xrightarrow{j} & L_1 \\
\end{array}
\quad \quad
\begin{array}{ccc}
\Omega^k S^k \Omega^k S^k X & \xrightarrow{\Omega^k S^k \epsilon} & \Omega^k S^k X \\
\downarrow j & & \downarrow j' \\
\Omega^k S^k X & \xrightarrow{\Delta} & L_2
\end{array}
\]

Then we have the maps $\Psi : L_1 \to \Omega^k L_1$, $\Phi : L_2 \to X$ such that $\Psi j = \Omega^k i, \phi j = r$. Since r is $2n$-connected and $\epsilon_k S^k$ is $(2n+k)$-connected, we see from Lemma 2 that Ψ is $(4n+1)$-connected, which implies $\theta \Psi \cong \Phi$ for a map $\Theta : \Omega^k L_1 \to X$. Consider the homotopy commutative diagram

\[
\begin{array}{ccc}
\Omega^k S^k X & \xrightarrow{\eta'} & \Omega^k S^k \Omega^k S^k X \\
\downarrow r & & \downarrow j' \\
X & \xrightarrow{\eta'} & \Omega^k S^k X \\
\end{array}
\quad \quad
\begin{array}{ccc}
\Omega^k S^k \Omega^k S^k X & \xrightarrow{\Omega^k S^k \epsilon} & \Omega^k S^k X \\
\downarrow j & & \downarrow j' \\
\Omega^k S^k X & \xrightarrow{\Delta} & L_2 \\
\end{array}
\]

where η' and η denote η_k. Then $\theta \Psi j \eta' \cong \epsilon_1$ and $(\Omega^k \epsilon_k S^k) \eta' \cong \epsilon_1$. Let $\rho : C_{\eta} \to C_{\sigma}$ and $\sigma : C_{\eta} \to C_{\rho \epsilon \sigma}$ denote the induced maps. Since σ is homeomorphic to C_{σ} by virtue of the 3×3 lemma, and since ρ is $3n$-connected by Lemma 3, we see that α is $3n$-connected. This shows that the induced map $C_{\eta} \to C_{\sigma}$ is $3n$-connected, since $C_{\rho \epsilon \sigma} \to C_{\eta}$ is a homotopy equivalence. It follows from the 5-lemma that $j \eta$ is $3n$-connected, hence Θ is $(3n+1)$-connected. Applying Lemma 1 to Θ, we get a $(4n+1)$-connected map $X \to \Omega^k Y$, from which the theorem follows.

Remark. By duality we may prove that, if X is an $(n-1)$-connected homotopy $S^k \Omega^k$-CW complex with $\dim X \leq 4n - 3k - 2, n \geq k+1 \geq 2$, then X has the homotopy type of a k-fold suspension.
References