9. On the Completions of Maps

By Tadashi ISHII
Shizuoka University

(Comm. by Kenjiro SHODA, M. J. A., Jan. 12, 1974)

In this paper all spaces are assumed to be completely regular T_2. Let f be a continuous map from a space X into a space Y. As is well known, there exists its extension $\hat{\beta}(f) : \hat{\beta}(X) \to \hat{\beta}(Y)$, where $\hat{\beta}(S)$ denotes the Stone-Čech compactification of a space S. Furthermore, it is known that $\hat{\beta}(f)$ carries $\mu(X)$ into $\mu(Y)$ and $\nu(X)$ into $\nu(Y)$ ([14], [3]), where $\mu(X)$ is the topological completion of X (that is, the completion of X with respect to its finest uniformity μ) and $\nu(X)$ is the realcompactification of X. We denote the restriction maps $\hat{\beta}(f) | \mu(X)$ and $\hat{\beta}(f) | \nu(X)$ by $\mu(f)$ and $\nu(f)$ respectively.

The purpose of this paper is to study the relations between f and $\mu(f)$ (or $\nu(f)$).

We note first that $\mu(f) : \mu(X) \to \mu(Y)$ and $\nu(f) : \nu(X) \to \nu(Y)$ are not necessarily perfect even if $f : X \to Y$ is perfect. A continuous map f from a space X onto a space Y is called a quasi-perfect (perfect) map if f is a closed map such that $f^{-1}(y)$ is countably compact (resp. compact) for each $y \in Y$.

Example. Let Y be a pseudo-compact space such that the preimage X of Y under a perfect map f is not pseudo-compact ([4, Example 4.2]). Then both $\mu(f) : \mu(X) \to \mu(Y)$ and $\nu(f) : \nu(X) \to \nu(Y)$ are not perfect, since $\mu(X)$ and $\nu(X)$ are not compact, while $\mu(Y)$ and $\nu(Y)$ are compact (cf. [14], [3]).

In view of these results, it is significant to study under what conditions $\mu(f)$ (or $\nu(f)$) is perfect.

Theorem 1. If $f : X \to Y$ is an open quasi-perfect map, then $\mu(f) : \mu(X) \to \mu(Y)$ and $\nu(f) : \nu(X) \to \nu(Y)$ are open perfect.

To prove this theorem, we use the following lemmas.

Lemma 2 (Zenor [17]). Let $C(X)$ be the space of all the non-empty compact sets in a space X with the finite topology. If X is completely regular then so is $C(X)$.

The finite topology of $C(X)$ is defined as follows: For any finite number of open sets $\{U_1, \ldots, U_n\}$ of X, we set $\bigcup_{i=1}^n U_i = \{K \in C(X) | K \subset \bigcup_{i=1}^n U_i, K \cap U_i \neq \emptyset \}$ for $i = 1, \ldots, n$. As an open base of $C(X)$ we take all such sets. It is well known that if X is completely regular then so is $C(X)$ (Michael [12]).
Lemma 3. If \(f : X \to Y \) is an open quasi-perfect map, then \(\varphi : Y \to C(\mu(X)) \) and \(\varphi^* : Y \to C(\nu(X)) \) are continuous, where \(\varphi(y) = \text{cl}_{\mu(X)} f^{-1}(y) \) and \(\varphi^*(y) = \text{cl}_{\nu(X)} f^{-1}(y) \) for each \(y \in Y \).

Hoshina [5] proved the continuity of \(\varphi : Y \to C(\mu(X)) \), and the continuity of \(\varphi^* : Y \to C(\nu(X)) \) is similarly proved.

Proof of Theorem 1. We note first that a surjective map \(g : X \to Y \) is perfect if and only if any filter base \(\{F_a\} \) in \(X \) such that \(\{g(F_a)\} \) has a cluster point in \(Y \) has a cluster point in \(X \). Now we prove the theorem for the case of \(\mu(f) \), since the case of \(\nu(f) \) is similarly proved. Let \(\mathcal{F} = \{F_a\} \) be a filter base in \(\mu(X) \) such that \(\{\mu(f)(F_a)\} \) has a cluster point \(v \) in \(\mu(Y) \). Let us put

\[
\mathcal{O} = \{G_r | v \in G_r, G_r : \text{open in } \mu(Y)\},
\]

\[
\mathcal{O}_Y = \{H_r | H_r = G_r \cap Y, G_r \in \mathcal{O}\}.
\]

Then \(\mathcal{O}_Y \) is a Cauchy filter base in \(Y \) with respect to \(\mu \), and it converges to \(v \) in \(\mu(Y) \). Since \(\varphi : Y \to C(\mu(X)) \) is continuous by Lemma 3, \(\{\varphi(H_r)\} \) is a Cauchy filter base in \(C(\mu(X)) \) with respect to the finest uniformity, and hence by Lemma 2 \(\{\varphi(H_r)\} \) converges to some \(K \in C(\mu(X)) \). Suppose that \((\cap \text{cl}_{\mu(X)} F_a) \cap K = \emptyset \). Then for each point \(u \) of \(K \) there exists \(F_{a(u)} \) of \(\mathcal{F} \) such that \(u \in \mu(X) - \text{cl}_{\mu(X)} F_{a(u)} \). Therefore there exists a finite number of points \(\{u_1, \ldots, u_n\} \) of \(K \) such that

\[
K \subset \bigcup_{i=1}^{n} (\mu(X) - \text{cl}_{\mu(X)} F_{a(u_i)}),
\]

since \(K \) is compact. Let \(F_{\beta} \) be an element of \(\mathcal{F} \) such that \(F_{\beta} \subset F_{a(u_i)} \), \(i = 1, \ldots, n \). Then we have

\[
\bigcup_{i=1}^{n} (\mu(X) - \text{cl}_{\mu(X)} F_{a(u_i)}) \cap F_{\beta} = \emptyset.
\]

Let \(O \) be a regularly open set in \(\mu(X) \) such that

\[
K \subset O \subset \text{cl}_{\mu(X)} O \subset \bigcup_{i=1}^{n} (\mu(X) - \text{cl}_{\mu(X)} F_{a(u_i)}).
\]

Since \(\{f^{-1}(H_r)\} \) converges to \(K \) in \(C(\mu(X)) \), we have \(f^{-1}(H_r) \subset O \) for some \(H_r \in \mathcal{O}_Y \), and hence \(\mu(f)^{-1}(G_r) \subset O \). This shows that \(\mu(f)^{-1}(G_r) \cap F_{\beta} = \emptyset \), that is, \(G_r \cap \mu(f)(F_{\beta}) = \emptyset \), which is a contradiction. Therefore we have \((\cap \text{cl}_{\mu(X)} F) \cap K = \emptyset \). Consequently \(\mathcal{F} \) has a cluster point in \(\mu(X) \). Moreover over the fact mentioned above it is easily seen that \(\mu(f) : \mu(X) \to \mu(Y) \) is surjective. Hence \(\mu(f) : \mu(X) \to \mu(Y) \) is perfect. Finally, by [10, Theorem 4.4], \(\beta(f) : \beta(X) \to \beta(Y) \) is an open map. Therefore it follows that \(\mu(f) \) is an open map. Thus we complete the proof.

Corollary 4. Let \(f : X \to Y \) be an open perfect map. Then the following statements are valid.

(a) \(Y \) is topologically complete if and only if \(X \) is topologically complete.

(b) \(Y \) is realcompact if and only if \(X \) is realcompact (Frolík [2]).

This corollary follows from Theorem 1 and the fact that the pre-
image of a topologically complete (realcompact) space under a perfect map is also topologically complete (resp. realcompact).

A continuous map \(f \) from a space \(X \) onto a space \(Y \) is called a WZ-map (Isiwata [10]) if \(\beta(f)^{-1}(y) = \text{cl}_{\beta(X)} f^{-1}(y) \) for each \(y \in Y \). Every closed map is a WZ-map. The following is a slight generalization of Theorem 1.

Theorem 5. If \(f : X \rightarrow Y \) is an open WZ-map such that \(f^{-1}(y) \) is relatively pseudo-compact for each \(y \in Y \), then \(\mu(f) : \mu(X) \rightarrow \mu(Y) \) and \(\nu(f) : \nu(X) \rightarrow \nu(Y) \) are open perfect.

Proof. Let \(X_0 = \beta(f)^{-1}(Y) \). Since \(\beta(f)^{-1}(y) = \text{cl}_{\beta(X)} f^{-1}(y) \) and \(\text{cl}_{\beta(X)} f^{-1}(y) \) is compact, we have \(X \subseteq X_0 \subseteq \mu(X) \subseteq \nu(X) \). Hence it follows that \(\mu(X_0) = \mu(X) \) and \(\nu(X_0) = \nu(X) \) ([14], [3]). On the other hand, \(\mu(f) : \mu(X_0) \rightarrow \mu(Y) \) and \(\nu(f) : \nu(X_0) \rightarrow \nu(Y) \) are open perfect by Theorem 1, since \(\beta(f)|X_0 : X_0 \rightarrow Y \) is an open perfect map. Thus the theorem holds.

Corollary 6. Let \(f : X \rightarrow Y \) be an open WZ-map such that \(f^{-1}(y) \) is relatively pseudo-compact for each \(y \in Y \). Then the following statements are valid.

(a) \(Y \) is pseudo-compact if and only if \(X \) is pseudo-compact.

(b) \(Y \) is pseudo-paracompact (pseudo-Lindelöf) if and only if \(X \) is pseudo-paracompact (resp. pseudo-Lindelöf).

Following Morita [14], a space \(X \) is said to be pseudo-paracompact (resp. Lindelöf) if \(\mu(X) \) is paracompact (resp. Lindelöf). In Corollary 6, (a) was proved by Isiwata [10] as a generalization of a theorem of Okuyama and Hanai [16], and the ‘only-if’ part of (b) was proved by Hoshina [5].

Concerning a (not necessarily open) quasi-perfect map, Morita [14] proved the following: If \(f \) is a quasi-perfect map from an \(M \)-space \(X \) onto an \(M \)-space \(Y \), then \(\mu(f) : \mu(X) \rightarrow \mu(Y) \) is a perfect map. As a generalization of this result, we can prove the following theorem.

Theorem 7. Let \(X \) and \(Y \) be the spaces each of which is the pre-image of a topologically complete space under a quasi-perfect map. If \(f : X \rightarrow Y \) is a quasi-perfect map, then \(\mu(f) : \mu(X) \rightarrow \mu(Y) \) is a perfect map.

To prove Theorem 7, we use the following lemmas.

Lemma 8 (Ishii [9]). If \(f \) is a quasi-perfect map from a space \(X \) onto a topologically complete space \(Y \), then \(\mu(f) : \mu(X) \rightarrow Y \) is perfect.

Lemma 9 (Kljusin [6]). Let \(f : X \rightarrow Y \) and \(g : Y \rightarrow Z \) be surjective. If \(h = g \circ f : X \rightarrow Z \) is perfect, then \(f \) and \(g \) are perfect.

Proof of Theorem 7. Let \(g : Y \rightarrow Z \) be a quasi-perfect map from \(Y \) onto a topologically complete space \(Z \). Then \(h = g \circ f : X \rightarrow Z \) is a quasi-perfect map, and hence \(\mu(h) : \mu(X) \rightarrow Z \) is a perfect map by Lemma 8. Let \(Y_0 = \mu(f)(\mu(X)) \). Since \(\mu(h) = \mu(g \circ f) = \mu(g) \circ \mu(f) \), \(\mu(g) \mid Y_0 : Y_0 \rightarrow Z \) is perfect by Lemma 9. Hence it follows that \(Y_0 \) is topologically...
complete, which implies that \(Y_0 = \mu(Y) \). Therefore \(\mu(f) : \mu(X) \to \mu(Y) \) is perfect by Lemma 9. Thus we complete the proof.

Corollary 10. Let \(X \) and \(Y \) be the spaces each of which is the preimage of a topologically complete space under a quasi-perfect map, and let \(f : X \to Y \) be a quasi-perfect map. Then \(Y \) is pseudo-paracompact (pseudo-Lindelöf) if and only if \(X \) is pseudo-paracompact (resp. pseudo-Lindelöf).

Remark. By Lemma 8, a space \(X \) is the preimage of a paracompact space under a quasi-perfect map if and only if \(X \) is a pseudo-paracompact space which is the preimage of a topologically complete space under a quasi-perfect map.

Applying Theorem 7, we can prove the following theorem.

Theorem 11. Let \(Y \) be an \(M^* \)-space ([7]). Then the following statements are equivalent.

(a) \(Y \) is the preimage of a topologically complete space under a quasi-perfect map.

(b) \(Y \) is an \(M \)-space.

Proof. Since (b) \(\implies \) (a) is obvious, we shall prove (a) \(\implies \) (b). Since \(Y \) is an \(M^* \)-space, there exists a perfect map \(f \) from an \(M \)-space \(X \) onto \(Y \) by Nagata's theorem [15]. Hence by Theorem 7 \(\mu(f) : \mu(X) \to \mu(Y) \) is a perfect map. Since \(\mu(X) \) is a paracompact \(M \)-space by Morita's theorem [14] and the image of a paracompact \(M \)-space under a perfect map is also a paracompact \(M \)-space (cf. Fillipov [1], Ishii [7], [8] and Morita [13]), \(\mu(Y) \) is a paracompact \(M \)-space. This implies that \(Y \) is an \(M' \)-space ([14]). Since each \(M^* \)-space is countably paracompact ([7]), \(Y \) is an \(M \)-space ([11]). Thus we complete the proof.

We note that Theorem 11 is also deduced directly from Lemma 8.

References

