
By Tetsuji Miwa
Research Institute for Mathematical Sciences, Kyoto University

(Comm. by Kôsaku Yosida, M. J. A., April 18, 1974)

In this note we state a theorem on (micro-) analyticity of the elementary solutions of hyperbolic differential equations with (not necessarily constant) multiple characteristics. Our result is a generalization of those of Kawai [1], Hörmander [2] and Andersson [3] which deal with operators with simple characteristics. (See Atiyah-Bott-Gårding [4] for operators with constant coefficients.)

If an m-th order differential operator \(P(t, x, D_t, D_x) \) is hyperbolic with respect to the direction \((1, \cdots, 0)\), there exists a unique elementary solution of the Cauchy problem, that is, \(m \)-tuple of hyperfunctions \(E_j(t, x) (j=1, \cdots, m) \) such that

\[
P(t, x, D_t, D_x)E_j(t, x) = 0,
\]

\[
D_{t-i}^j E_j(0, x) = \delta_{ij} \delta(x) \quad (i, j = 1, \cdots, m).
\]

(See Kawai [5] and Bony-Schapira [6].) Our problem is to decide the singular spectrum of \(E_j(t, x) \).

Recently Kashiwara-Kawai [7] defined micro-hyperbolicity and constructed good elementary solutions for micro-hyperbolic operators. The essential key to our theorem is their deep analysis in micro-local sense. Remark that our lemma is valid for pseudo-differential operators.

Here we treat only the simplest case. More complete results and proofs will be published elsewhere.

First we set up a class of operators which can be easily handled. Let \(P(x, D_x) \) be a pseudo-differential operator defined in a neighborhood of \(x_0^* = (x_0, \xi_0) \in \mathbb{P}^*X \). Let \(a(P)(x, \xi) = p_1^1(x, \xi) \cdots p_r^1(x, \xi) \) be an irreducible decomposition at \(x_0^* \). We call \(P(x, D_x) \) reductive if each \(p_j(x, \xi) \) is simple characteristic, that is, \(d_j(x, \xi)p_j(x, \xi) \) is not parallel to \(\sum_1^r \xi_1 dx_1 \). In this case we can define \(r \)-bicharacteristic strips through \(x_0^* \). A hyperbolic differential operator is called reductive if it is reductive at each point on its real characteristic variety.

Examples.

\[
D_t^2 - \ell_1 (D_x^2 + D_y^2)
\]

\[
(D_t^2 - a(t, x, y)D_x^2 - b(t, x, y)D_y^2)(D_t^2 - c(t, x, y)D_x^2 - d(t, x, y)D_y^2)
\]

where \(a, b, c \) and \(d \) is positive for real \((t, x, y)\).
Now let us define characteristic conoid of a reductive hyperbolic differential operator. Let \(P(t, x, D_t, D_x) \) be a reductive hyperbolic differential operator with respect to the direction \((1,\ldots,0)\) defined in a neighborhood of the origin. Let \(\mathcal{V}_R = \{(t, x, \tau, \xi) \in \sqrt{-1}S^*M/\sigma(P)(t, x, \tau, \xi) = 0\} \) and \(D = \{(t, x, \tau, \xi) \in \mathcal{V}_R/ \text{the number of bicharacteristic strips through } (t, x, \tau, \xi) \geq 2\} \). We assume the following: at each point \((t_0, x_0, \tau_0, \xi_0) \in D\), the number of bicharacteristic strips is two and if \(\sigma(P)(t, x, \tau, \xi) = p_1(t, x, \tau, \xi)p_2(t, x, \tau, \xi) \) is an irreducible decomposition, \(\{p_1, p_2\}(t_0, x_0, \tau_0, \xi_0) \neq 0 \) where \(\{\, , \} \) denotes Poisson bracket. Let us pursue a bicharacteristic strip through \((0, 0, \tau_0, \xi_0) \in \pi^{-1}(0)\cap \mathcal{V}_R \) where \(\pi: \sqrt{-1}S^*M \rightarrow M \). It will fall across \(D \). Then two bicharacteristic strips come forth from there and they may again fall across \(D \) and so on. We call the union of these bicharacteristic strips the characteristic conoid.

Theorem. The elementary solution \(E_3(t, x) \) is micro-analytic except the characteristic conoid.

The essential part of the proof of this theorem is the following lemma.

Lemma. Let \(P(t, x, D_t, D_x) \) be a pseudo-differential operator defined in a neighborhood of \((0, \ldots, 0, \sqrt{-1}(0, \ldots, 1)\infty)\) such that \(\sigma(P) = t^n\tau^n \). If a microfunction \(u \) satisfies

a) \(P(t, x, D_t, D_x)u = 0 \),

b) \(u = 0 \) on \(\{(t, 0, \ldots, 0, \sqrt{-1}(0, \ldots, 1)\infty/ t < 0\} \cup \{(0, 0, \ldots, 0, \sqrt{-1}(t, 0, \ldots, 1)\infty/t < 0) \) or \(b' \) \(u = 0 \) on \(\{(t, 0, \ldots, 0, \sqrt{-1}(0, \ldots, 1)\infty/t < 0\} \cup \{(0, \ldots, 0, \sqrt{-1}(t, 0, \ldots, 1)\infty/t > 0) \), then \(u = 0 \) at \((0, \ldots, 0, \sqrt{-1}(0, \ldots, 1)\infty)\).

This is an easy corollary of the existence of a good elementary solution of Kashiwara-Kawai.

References

