16. An Interpolation of Operators in the Martingale H_p-spaces

By Masami OKADA
Mathematical Institute, Tohoku University
(Comm. by Kosaku YOSIDA, M. J. A., Feb. 12, 1976)

1. Introduction. In this note we show that the Marcinkiewicz interpolation theorem of operators can be extended in the martingale setting.

2. Definition. Let $(\Omega, \mathcal{F}, P, \{\mathcal{F}_n\}_{n=1}^\infty)$ a probability space furnished with a non-decreasing sequence of σ-algebras of measurable subsets $\mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n \subset \mathcal{F}_{n+1} \subset \cdots \subset \mathcal{F} = \bigvee_{n=1}^\infty \mathcal{F}_n$.

We define the set of random variables $H_p = H_p(\Omega, \mathcal{F}, P, \{\mathcal{F}_n\}_{n=1}^\infty) = \left\{ f \in L^p(\Omega); \| f \|_p = \left[\int_\Omega (f^*)^p dP \right]^{1/p} < \infty \right\}$, where $f^*(w) = \sup_{1 \leq n < \infty} |f_n(w)|$ and $p \geq 1$.

Note that $H_1 \subseteq L^1$, and that $H_p = L^p$ for $1 < p < \infty$. In fact, there exists a constant A_p such that $\| f \|_p \leq A_p \| f \|_1$. Furthermore, as is well-known, the norm $\| f \|_p$ is equivalent to $\| (\sum_{n=1}^\infty |f_n|^p)^{1/p} \|_p$, where $f_n = f_n - f_{n-1}$, $f_0 = 0$ ([1]-[3]).

3. Weak type result. Let T be an operator from H_p to the set of random variables defined on a σ-finite measure space $(\Omega, \mathcal{F}, \tilde{P})$.

Theorem. Suppose that

1. T is quasi-linear, i.e. $|T(f + g)| \leq C |Tf| + |Tg|$.

2. $\tilde{P}(\{w; |Tf(w)| > t\})^{1/q} \leq M_t/t \| f \|_{p'},$ for all $t > 0$, where $1 \leq p \leq q_i < \infty$ ($i=0,1$), $p_0 \neq p_1$ and $q_0 = q_1$. Let us put $1/p = (1 - \theta)/p_0 + \theta/p$, and $1/q = (1 - \theta)/q_0 + \theta/q_1$, $0 < \theta < 1$. Then

$$\| Tf \|_q \leq AC(C + 1)M_t^{-\theta}M_{t_0}^{\theta} \| f \|_p,$$

where $$A^q = 0((q_1 - q)^{-1} + (q - q_0)^{-1} + q - q_0)$$.

Proof. We consider the case $1 = p_0 < p_1$ and $q_0 < q_1$ only, the other cases are treated similarly.

1-st step. The following decomposition lemma is used in the proof, which corresponds to the Calderón-Zygmund decomposition ([4]-[6]).

Lemma (R. Gundy). Let $v \in L^1(\Omega), r \geq 1$. Then for each $a > 0$, v is decomposed into three random variables $g, h, k, v = g + h + k$, which satisfy

1. $P(\{w; g^*(w) > 0\}) \leq K/a \| v \|,$

2. $\| \sum_{n=1}^\infty |Ah_n| \|_1 \leq K \| v \|,$

where $|Ah_n| = |Ah_n| - |Ah_{n-1}|$, $h_0 = 0$.
with a constant K independent of a, v, r.

Now put \(\lambda = p_0(q - q_0)/q_0(p - p_0), \rho = -q_0/(q_1 - q_0), \sigma = q_1/(q_1 - q_0), \tau = (p_0q_0 - p_0q_1)/p_0(q_0 - q_1), B = M_1 M_0', f = f, r = (p + 1)/2 (> 1). \)

2-nd step. Let \(f \in L^p(\Omega) \). Then for each \(y > 0 \) the following decomposition of \(f \) is possible:

1. \(f = u + u', \ u' = k + g + h \)
2. \(u = f, \text{ if } |f| < (y/B)^t \) and \(u = 0, \text{ elsewhere}. \)
3. There exists a constant K independent of \(y, u', r \), so that
 \[
 \|k\|_{p_1} \leq K(y/B)^{(p_1 - r)} \|u'\|^r, \\
 \|g\|_{l_1} \leq K A_r (y/B)^{(1 - r)} \|u'\|^r \\
 \|h\|_{l_1} \leq K (y/B)^{(1 - r)} \|u'\|^r.
 \]

In fact (3) is shown by lemma as follows. Put \(v = u' \) and \(a = (y/B)^t \) in the following inequalities.

\[
\|k\|_{p_1} \leq \int |k| \, dP \cdot \|k\|_{p_1 - 1} \leq K \|v\|_1 \leq K \int |v|^r \, dP, \\
\|g\|_{l_1} \leq P(g^* > 0)^{1/r} \int (g^*)^r \, dP \leq (K/\alpha \|v\|_1)^{1/r} A_r \|g\|_r \leq K a^{1/r} \cdot A_r \|v\|^{r(r + 1)}
\]

and

\[
\|h\|_{l_1} \leq \sum_{n=1}^{\infty} |A h_n| \leq K \|v\|_1 \leq K a^{1/r} \|v\|_r.
\]

3-rd step. Considering the decomposition above, we may write

\[\|Tf\|_s = q \int_0^\infty y^{q-1} P(|Tf| > y) \, dy \leq q(4c(c + 1))q(I_1 + I_2 + I_3 + I_4), \]

where

\[I_1 = \int_0^\infty y^{q-1} P(|Tu| > y) \, dy, \]
\[I_2 = \int_0^\infty y^{q-1} P(|Tk| > y) \, dy, \]
\[I_3 = \int_0^\infty y^{q-1} P(|Tg| > y) \, dy, \]
\[I_4 = \int_0^\infty y^{q-1} P(|Th| > y) \, dy. \]

Now the rest of the proof is almost the same as in [4]. For example, we estimate the value \(I_3 \) as follows.

\[I_3 \leq M_0^g \int_0^\infty y^{q_0 - 1} \|g\|_{p_0} \, dy \leq K A_{p_0} M_0^g B^{(r - 1)/q_0} \int_0^\infty y^{q_0 - 1 + 1/2} \|u'\|_{r_0} \, dy \leq K A_{p_0} M_0^g B^{(r - 1)/q_0} \left\{ \left\{ \int_0^\infty y^{q_0 - 1 + 1/2} \|u'\|_{r_0} \, dy \right\}^{1/2} \right\}^{q_0} \]
\[\begin{align*}
&\leq KA_0^p M_0^p B^{q-2} \left((q-q_0) + \lambda (1-r)q_0 \right) \left[\int |f|^{(q-q_0)/q_0} q_0^{q_0+1} dP \right]^{q_0} \\
&\leq 0(1/(r-1)^{2q} (q-q_0)) M_0^{q(q-2)} M_0^{q} ||f||_p^q \\
\text{Q.E.D.}
\end{align*}\]

4. Remarks.

(1) The result also holds even if \(P(Q) = \infty \).

(2) If \(X = (X_n)_{n=0}^\infty \) is a martingale with respect to \((Q, \mathcal{F}, P, \{\mathcal{F}_n\}_{n=1}^\infty) \) we say that \(X \in M_p \) \((1 \leq p < \infty) \) when \(\|X\|_{M_p} = \sup_{n \geq 1} E(|X_n|^p)^{1/p} < \infty \). Then \(H_p \) is isomorphic to \(M_p \) for \(1 \leq p < \infty \) by the correspondence, \(f(w) \leftrightarrow X_n(w) = \lim_{n \to \infty} X_n(w) \). Therefore it is concluded that the interpolation theorem of operators also holds on martingale spaces \(M_p \) for \(1 \leq p < \infty \).

References

