97. Histological Studies on Hemoglobin Degradation. I

Radioautographic Study in Rat Liver and Kidney

By Keiko Seki,**) Machiko Shindo,** Yoshio Sawasaki,**
Hiroshi Nakajima,** Harunori Ishikawa,***)
and Eichi Yamada***)

(Communicated by Kenji Yamaoka, M.J.A., Dec. 12, 1979)

Introduction. It has been known that hemoglobin (Hb) released into the blood stream combines with haptoglobin (Hp), and this Hb-Hp complex is taken up and disintegrated by liver.1)-12) However, it is not clear how Hb-Hp complex is processed in the liver. Several studies have reported that Hb-Hp complex is taken up and degraded by the reticuloendothelial cells including Kupffer cells.2),3),6)-8) On the other hand, it was also proposed that the complex is degraded selectively in hepatocytes.1),4),5),9)-12) In these studies, however, it should be noted that no direct evidence based on histological survey is available, and 59Fe-labeled Hb was frequently used.9)-12) The removal of Fe from Hb occurs in liver shortly after the administration of Hb, and Fe binds with its binding proteins or incorporated into hepatic ferroproteins such as ferritin or cytochromes. Therefore, 59Fe-labeled Hb is not suitable for the study of Hb degradation in liver. The above discrepancy may be due to these problems.

In the series of our studies, the fate of Hb in the liver was directly investigated in situ by radioautography using 3H-labeled Hb which was synthesized in vivo with extremely high specific radioactivity. This communication points out that the findings using rat Hb may be misleading because of its very low solubility in physiological pH range.

Materials and methods. 3H-Hb of rat was synthesized by incubating the reticulocytes of newborn rats with 1.0 mCi of 3H-2-glycine and 3H-4,5-leucine (20 and 30 Ci/m mole, NEN). It has been known that fetal Hb is not found in rat erythrocytes after 16 days of gestation.12)-14) The specific radioactivity of Hb was 2.0×10^7 dpm/mg.

Male Wistar rats (300 g) were used in this study. A small and large amount (3.7 and 12.6 mg) of 3H-Hb which corresponds to about

***) This investigation was supported in part by the Grants no. 244025 from the Ministry of Education, Science, and Culture of Japan.

**) Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113.

***) Department of Anatomy, Faculty of Medicine, University of Tokyo, Tokyo 113.
0.5 and 2.0-fold serum Hb binding capacity, respectively, was injected into the tail vein of the rat. Fifteen min after the injection, liver and kidney were removed quickly, cut into small pieces and immersed in Karnovsky's fixative\(^{(15)}\) for 2 hrs at 4°C. The tissues were then washed in 10% buffered sucrose, postfixed in 1% OsO\(_4\) for 1 hr, dehydrated in graded series of cold ethanol and embedded in Epon 812. Semithin sections (0.5 \(\mu\)m thick) were made for light microscopic radioautography using Sakura NR-M2 nuclear emulsion (Konishiroku Photo Ind., Tokyo). After 8 weeks, each section was developed in Konidol-X (Konishiroku Photo Ind., Tokyo) and stained with 1% toluidine blue for microscopic analysis.

Disc electrophoresis was performed using 7.5% polyacrylamide gels. For the detection of the radioactivity, the gel was sliced in 1.2 mm thick by a gel slicer and each section was incubated in 1.0 ml of Protosol (NEN)/H\(_2\)O, 9:1 (v/v) for 2 hrs at 60°C, neutralized with acetic acid, and then counted in a liquid scintillation counter using toluene scintillator. The radioactivities of Hb, fixative and alcohol were determined in toluene·Triton X-100 scintillator (2:1).

Table I. Retainment of radioactivity in liver tissue during fixation and dehydration

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Count in tissue</th>
<th>Fixative</th>
<th>Washing buffer</th>
<th>Osmium</th>
<th>Ethanol 65%</th>
<th>Ethanol 75%</th>
<th>Ethanol 85%</th>
<th>Ethanol 100%</th>
<th>Elution of radioactivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>480,000</td>
<td>18,500</td>
<td>1,550</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.2</td>
</tr>
<tr>
<td>2</td>
<td>480,000</td>
<td>12,600</td>
<td>2,420</td>
<td>590</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.3</td>
</tr>
<tr>
<td>3</td>
<td>406,000</td>
<td>18,500</td>
<td>1,800</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Rats were injected intravenously with 3.7 mg of \(^3\)H-hemoglobin. Fifteen min after the injection, liver slices (100-120 mg) were prepared.

Results and discussion. Table I shows the radioactivity which is lost during the fixation and dehydration of tissue blocks. The radioactivities in glutaraldehyde solution and the washing buffer were only 3-5% of that in the tissue, and no radioactivity was found in the alcohol series. Therefore, nearly all of the radioactivity remains within blocks during the preparation.

To examine whether injected Hb combines with Hp \textit{in vivo}, disc electrophoresis of the serum was performed after the administration of a small amount of \(^3\)H-Hb, being about 50% of Hb-binding capacity in rat serum. As shown in Fig. 1, 15 min after the injection, all of the radioactivity was recovered as Hb-Hp complex, indicating that no free Hb was present in the serum in this situation. In contrast, free Hb was observed in serum when a large amount of Hb was
administered.

The radioautograms of liver after the administration of 3H-Hb are shown in Fig. 2, a and b. The silver grains were located in periphery of parenchymal cells, showing Hb that has just been taken up by the hepatocytes. A regional difference in the uptake of 3H-Hb by hepatocytes was noted. Some groups of hepatocytes, being composed of several cells, were highly labeled, and such groups were scattered in the liver with no definite localization. The grains were also observed in Kupffer cells and endothelial cells. No difference was observed in the uptake of fib by the liver cells between the administration of small and large amount of fib.

Fig. 3, a and b show the radioautograms of the kidney. When a small amount of Hb was injected, no silver grain was observed in any of the kidney cells. In contrast, with large dose of Hb, silver grains were observed in proximal tubule cells, but not in distal and collecting tubule cells. It appears that free Hb was passed through the gromerulus due to small molecular size, and taken up by the epithelial cells of proximal tubules. It has been reported that Hb is also metabolized by kidney in severe hemolysis. In kidney, free Hb seems to be selectively reabsorbed by proximal tubule cells.

The present findings are consistent with the previous reports which have been shown that Hb-Hp complex was
taken up by liver, but not by kidney. However, any conclusive finding was not obtained to clarify whether Hb-Hp complex is taken up by hepatocytes or Kupffer cells. It seems that the complex is taken up by hepatocytes, since the uptake of \(^{3}\text{H}\)Hb by hepatocytes was similar in low and high dose of Hb, whereas the uptake by Kupffer cells increased in high dose. Kupffer cells may uptake the free Hb.

The silver grains in Kupffer cells seem also to be due to the unusually low solubility of rat Hb under the physiological pH.\(^{20)}^{22}\) The crystallization of rat Hb even in erythrocytes has been reported.\(^{23}\) It is also known that Hb-Hp complex of rat is easily crystallized.\(^{24}\) Such
a crystallized Hb-Hp complex may be recognized and taken up by the Kupffer cells as a foreign molecule. This characteristics of rat Hb may explain the selective uptake of Hb-Hp complex by Kupffer cells in the several reports using rat Hb.21,3,7 Furthermore, rat Hb shows marked molecular heterogeneity, in which 6 different molecules were observed.14,25 It seems possible that several Hp complexes of 6 Hbs are taken up by Kupffer cells. Thus, care must be taken for the study on the recognition mechanism of Hb by liver cells using rat Hb.

In the following communication,26 the experiments will be reported using mouse, in which Hb has a high solubility in the physio-

Fig. 3. Radioautogram of kidney 15 min after the administration of 3H-hemoglobin. Rats were injected with 3H-hemoglobin of 0.5 (a) and 2.0 (b)-fold serum hemoglobin-binding capacity. Bar; 20 µm.
logical pH as human Hb and no heterogeneity in Hb is observed. In the mouse, Hb-Hp complex is nearly selectively taken up by hepatocytes, and little uptake is observed in Kupffer cells, indicating that Hb-Hp complex is taken up and degraded by hepatic parenchymal cells.

References