72. Synergistic Inhibition of the Growth of Adenocarcinoma 755 by the Combination of Interleukin-2 and Interferon-β

By Masaaki Iiguchi, Masanori Sakurai, Mikako Shimizu, Toshifumi Iizuka, Nagahiro Saijo, and Akio Hoshide

(Communicated by Takashi Sugimura, M. J. A., Sept. 12, 1986)

Introduction. Interleukin-2 (IL-2) is a secretory product of activated helper T-lymphocytes. It has been demonstrated that IL-2 is essential not only for expansion of antigen-triggered T-lymphocytes and cytotoxic T cells, but also for the activation of natural killer (NK) cells, which have an inhibitory effect on tumor metastasis. Currently there is a great deal of interest in using IL-2 in clinical cancer therapy because large amounts of recombinant human IL-2 (rHIL-2) are available as a result of advances in the field of genetic engineering. Now it is possible for us to use sufficient quantities of rHIL-2 to conduct properly controlled clinical trials. In animal studies, it has been reported that rHIL-2 together with lymphokine activated killer (LAK) cells induces marked decrease in the numbers of established pulmonary metastasis of MCA-105 sarcoma cells in C57BL/6 mice although rHIL-2 alone shows little effect in this experimental system. We report here that the growth of adenocarcinoma 755 was markedly inhibited by a combination of rHIL-2 and recombinant murine interferon-β (rIFN-β) in C57BL/6 mice, though rHIL-2 or rIFN-β alone showed little effect on the tumor growth.

Materials and methods. Specific pathogen-free (SPF) male C57BL/6 mice were obtained from the Shizuoka Laboratory Animal Center (Hamamatsu). Male nu/nu mice (BALB/c background) were supplied by CLEA Japan. The mice housed under SPF conditions were used at the age of 6 (C57BL/6) and 10 (nu/nu) weeks at the beginning of the experiments. Adenocarcinoma 755, which is syngeneic with the C57BL/6 mouse, was used for this study. Lyophilized anti-asialo GM1 antiserum (Wako Pure Chemical Industries, Osaka) was reconstituted with balanced salt solution. As reported previously, when 500 µg of anti-asialo GM1 antibody was administered intravenously into the tail vein of C57BL/6 mice, the function of NK cells was suppressed. In this study we injected intravenously 1 mg of anti-asialo GM1 antibody on days 5 and 9. Lyophilized human recombinant interleukin-2 (rHIL-2) (specific activity, 1 × 10^7 units/mg of protein) was obtained from Biogen S.A. Company, Switzerland, and Shionogi & Co., Osaka. Mouse recombinant interferon-β (rIFN-β) (specific activity, 5.5 × 10^7 international units/mg of protein) was supplied by Toray Industries, Inc., Kamakura.

Groups of 8 (C57BL/6) or 4 (nude) mice were used. Adenocarcinoma 755 (5 × 10^5 cells/mouse) was implanted subcutaneously (s.c.) into the right thigh.
on day 0. The mice were given rHIL-2 (1 × 10^5 units/mouse) and rIFN-β (1 × 10^5 international units/mouse) 8 times by s.c. injection into the opposite side (left thigh) in the advanced tumor system (days 5-12). The growth of s.c.-implanted adenocarcinoma 755 was monitored by measurement of the perpendicular diameters with calipers, and tumor volume (mm^3) was calculated by the formula 1/2 × (major diameter in mm) × (minor diameter in mm)^2.

**Results and discussion.** RIL-2 alone was found to have a weak inhibitory effect on the growth of s.c.-implanted adenocarcinoma 755, and rIFN-β showed no effect. However, the combination of rHIL-2 and rIFN-β showed a marked inhibitory effect on tumor growth (Fig. 1). On the 14th day after im-

![Fig. 1. Inhibitory effect of rHIL-2 and/or rIFN-β on tumor growth (adenocarcinoma 755) in C57BL/6 mice. Arrows indicate the treatments of rHIL-2 and/or rIFN-β. Anti-asialo GM1 antibody was treated on days 5 and 9. Values represent the mean of 8 mice; the S.E.s of the mean were less than 35% of the mean values. Inhibition in combination groups on 12 through 22 days after transplant was significantly greater than that in rHIL-2 group (P<0.05). –○–, untreated control; –△–, rHIL-2; –▲–, rIFN-β; –△–, rHIL-2+rIFN-β; –□–, anti-asialo GM1 antibody; –■–, rHIL-2+rIFN-β+ anti-asialo GM1 antibody.](image-url)

plantation of tumor, the tumor volumes were 2202 ± 314 (S.E.), 1536 ± 235 (T/C = 68%), 2226 ± 190 (T/C = 101%), and 296 ± 28 mm^3 (T/C = 13%) (P < 0.001, different from rHIL-2 alone) for untreated control, rHIL-2, rIFN-β, and the combination of rHIL-2 and rIFN-β, respectively. rHIL-2 and rIFN-β are both potent inducers of NK cell activity in mouse cytotoxic T-cell lines, and synergistic induction of NK activity is obtained by the combination of IL-2 and IFN-β. Various recent reports suggest that NK cells play an important role in resistance against tumor development in vivo. Anti-asialo GM1 antibody suppresses the NK activity. However, anti-asialo GM1 antibody treatment did not influence the inhibitory effect of the combination of rHIL-2 and...
rIFN-β on tumor growth. This suggests that inhibition of tumor growth is primarily mediated by a mechanism that is independent of augmentation of NK cells. Kuribayashi et al. showed a spleen cell population exposed to IFN inducer had a markedly augmented ability to bind IL-2, suggesting that IFN causes an increased number and/or affinity of IL-2 receptors. To investigate the participation of T-cell in the potentiation of the inhibition of tumor growth, rHIL-2 and rIFN-β were injected s.c. into nude (nu/nu) mice with adenocarcinoma 755. The results show that the combination of rHIL-2 and rIFN-β had an additive, not synergistic, effect (Fig. 2) unlike that in C57BL/6 mice.

Therefore, these results suggest that T-cell activation is important for the synergistic inhibitory effect of the combination of rHIL-2 and rIFN-β in C57BL/6 mice. This synergistic inhibition in normal mice and additive inhibition in nude mice of tumor growth by the combination of rHIL-2 and rIFN-β may offer a new possibility for the therapeutic application of these biological response modifiers.

Acknowledgements. This work was supported by Grants-in-Aid from the

References