Dynamic Reduction of Guarded Constraints for
the Hybrid Systems Modeling Language HydLa

Takafumi Horiuchi Kazunori Ueda

Department of Computer Science and Engineering, Waseda University

HydLa is a language for modeling hybrid systems—dynamical systems that intermix discrete and continuous behavior. Its adoption of a constraint-based framework benefits the language in various ways, such as allowing a concise representation of systems and performing error-free high precision simulations. In spite of all the advantages, the computations among sets of constraints become a bottleneck in simulation time when handling some large-scale models. The purpose of this research lies in providing a method of improving the computational efficiency and the scalability of the language and its simulator. This is achieved by considering the monotonic aspects in HydLa models to dynamically reduce the size of guarded constraints. Results show that this approach is effective for models that contain multiple objects represented by guard conditions. As for the model evaluated in an experiment in the research, the overall computational time has reduced to approximately half the original length.

1. Introduction

In recent years, there has been a rapid growth of interest in hybrid systems [Lunze]—systems that intermix discrete and continuous behavior. HydLa [Ueda et al.], which is the subject language of this research, is a modeling language for hybrid systems. A notable feature of HydLa is that it allows a concise representation of hybrid systems by directly handling high-level descriptions of mathematical and logical formulas as the source program. This feature is realized by the adoption of a constraint-based framework. In HydLa, constraints are the basic components that specify the behavior of models. These constraints are structured in the form of a constraint hierarchy [Borning et al.], among which the consistency is retained when processing the model.

The guaranteed-accuracy implementation of HydLa is called HyLaGI [Matsumoto], which takes a HydLa model as the input, simulates the model, and outputs the solution trajectory. HyLaGI has strong computational features such as performing error-free symbolic calculations and handling uncertain parameters. However, it is known that the computations on constraint sets become a bottleneck when the number of guarded constraints (i.e. constraints enabled when guard conditions are entailed) is large.

In this paper, we observe the relation between the size of guarded constraints and simulation time and propose a method for improving the efficiency of simulations by considering the monotonic behavior in HydLa models to dynamically reduce the number of guarded constraints.

2. Guarded Constraints in Simulations

In the current simulation algorithm of HyLaGI, the simulation time increases in relation to the size of guarded constraints that appears in the model. This becomes a severe bottleneck when processing large-scale models that contain a large number of objects represented by guarded constraints. The correlation between these two elements can be observed in a series of simulations of the model shown in Figure 1. This HydLa model represents a ball bouncing on a flat surface, where the surface is split into \(N \) pieces, each of which has the length of 1 unit. Constraints INIT.X, INIT.Y, and FALL define the initial and default behavior of the ball and BOUNCE describes the behavior of the ball when it collides with the surface at height 0. In the constraint declaration at line 9, FALL is assigned a weaker priority than BOUNCE, therefore FALL is temporarily unadopted when the two constraints conflict at the timing of the bounce. The pieces of the surface are generated in constraint BOUNCES with a list notation. For simplicity, the coefficient of restitution, initial horizontal velocity, and initial height of the ball are all set to 1. The model is simulated until time \(N \), where the ball travels from the left end to the right end of the split surface.

As an experiment, the model is simulated multiple times, each time with different values of \(N \) ranging from 10 to 200. This setting will change the number of guarded constraints in the model, with the increase of one for each increment on the value of \(N \). Other conditions are consistent throughout.
the experiment. The result\(^1\) of the experiment is shown
in Figure 4 (circle plots). These data indicate that the
increase in the value of \(N\) leads to a longer simulation time.
The regression line among the plotted data (original) is
represented by the following equation:

\[
\text{SimulationTime} = 1.1463N^2 + 1.5554N + 0.4949 \quad (1)
\]

Thus, it can be inferred that, for this model, the simulation
time increases in proportion to the square of the number
of guarded constraints. In general, this behavior can be
a bottleneck in the simulation of large-scale models that
contain a large number of guarded constraints.

3. Location of the Bottleneck

To identify the location of the bottleneck in the current
simulation algorithm, the distribution of time consumption
among different computational units was measured. In a
simulation of the split surface model where \(N\) was set to
100, the entire simulation time was \(1.23 \times 10^8\) seconds. The
most time consuming procedure was \(\text{FindMinTime}\), a
function that calculates the minimum satisfiable time of the
next discrete change, which consumed \(1.17 \times 10^8\) seconds
(i.e. 96% of the entire simulation time). Taking this into
account, the computation of \(\text{FindMinTime}\) is the location
of the aforesaid bottleneck problem.

4. Reduction of Guarded Constraints

The computation of \(\text{FindMinTime}\) is performed by checking
the satisfiability of conditions in antecedents of all the
guarded constraints that appears in the model. This can be
a drawback in terms of efficiency of simulations. For example,
when considering a model of a ball bouncing down
a staircase (Figure 2), the ball will never interact with the
steps which it has already passed. In this case, it is unnecessary
to check the satisfiability of guards that represent the
steps behind the current position of the ball. The present
simulation algorithm does not consider these situations,
resulting in redundant computations when iterating through
all of the guards during the computations of \(\text{FindMinTime}\).

This inefficiency in the current simulation algorithm leads
to the proposal of this research—dynamically reducing the
number of guarded constraints. The aim of this proposal is
to avoid redundant calculations when evaluating the entail-
ment of guards and improving the computational efficiency
of simulations.

The removal of guarded constraints is safe only when it
is certain that the guard condition will never be satisfied in
the future. Inadequate removal of guards will lead to wrong
simulation results, which must be avoided. The decision of
whether the guards are removable or not can be made by
taking into account the concept of monotonicity, described
by the following propositions:

\[
\forall t \in (\alpha, \beta) \quad \frac{dx(t)}{dt} \geq 0 \quad (2)
\]

\[
\forall t \in (\alpha, \beta) \quad \frac{dx(t)}{dt} \leq 0 \quad (3)
\]

Proposition (2) ensures the monotonic increase of variable
\(x\) in the time interval \((\alpha, \beta)\) and proposition (3) ensures
the monotonic decrease. The proposed method considers
monotonicity of variables from two approaches, one dealing
with uniform monotonicity and another with alternating
monotonicity.

4.1 Approach to Uniform Monotonicity

The first approach considers the monotonicity of vari-
ables that are uniform throughout the simulation. This
situation corresponds to the case where \(\alpha\) and \(\beta\) are set to
0 and \(\text{MaxT}\) (i.e. maximum simulation time), respectively,
in propositions (2) and (3). For instance, this behavior is
exhibited in the model of a ball bouncing on split surface,
where variable \(x\) keeps increasing from the beginning to the end
of simulation. The conceptual diagram of this approach is
illustrated in Figure 3, representing the case where a vari-
able is monotonically increasing throughout the simulation.

In order to apply this method for the dynamic reduc-
tion of guarded constraints, the truth/falsity of the uniform
monotonicity must be evaluated, which can be achieved by
using model checking techniques. After evaluating the uni-
formly monotonic behavior of variables, that information is
used to determine the removable guarded constraints.

4.2 Approach to Alternating Monotonicity

The types of model that the above-mentioned uniform
approach can make use of is limited to cases where mono-
tonic aspects are preserved from the beginning to the end
of simulations. Variables that alternate its monotonic be-
havior during simulations would not be covered in this
approach. To enhance the uniform approach and to enable
the handling of alternating monotonicity of variables, the
method can be enhanced by the integration with assertion

*

*1 Execution environment: CentOS 7.4.1708, AMD Ryzen
Threadripper 1950X 16-Core Processor, 64GB Memory, clang
6.0.0 compiler, Mathematica 11.3.0.

Figure 2: Concept of Omitting Verbose Guard Evaluations

Figure 3: Concept of Approach to Uniform Monotonicity
techniques. The basic concept of this method is equivalent to the uniform approach, where, in the beginning of the procedure, the uniformity of monotonicity is assumed to hold throughout the simulation. The notable feature of this method is that the uniformity is constantly asserted by statements \(\text{ASSERT}(x' \geq 0) \) and \(\text{ASSERT}(x' \leq 0) \). When violations on these conditions are detected, the simulation is restarted from that time point with the assumptions on monotonicity inverted.

Illustrated in Figure 5 is the concept of the enhanced method. \(\alpha \) and \(\beta \) in the diagram corresponds to those in propositions (2) and (3). In the beginning of the procedure, \(\alpha \) is set to 0 and \(\beta \) is set to \(\text{MaxT} \). The properties are not determined to be held at this point. This is different from the case in the method for uniform monotonicity, where either of the propositions (2) or (3) were determined to be held from the computations made prior to the simulation. On the occurrence of assertion violations, that time point is set as the new \(\alpha \) and the procedure continues. This process is repeated until the simulation time reaches \(\text{MaxT} \). The applicable guarded constraints are removed and reset dynamically during the simulation by using these information of monotonicity.

5. Experimental Results

The approach to uniform monotonicity was implemented and its effectiveness was evaluated with the model of a ball bouncing on split surface (Figure 1). The comparison between the simulation time of the original algorithm of HyLaGI and the algorithm with the proposed method is shown in Figure 4. The regression line for the result of the proposed method is represented by the following equation:

\[
\text{SimulationTime} = 0.6083 N^2 + 0.8763 N + 1.691
\]

By comparing equations (1) and (4), we can infer that the simulation time with the proposed method is half the length of the original. Since the method aims to improve simulation efficiency by reducing the size of guarded constraints, this proposal is expected to be effective for models that contain large number of guarded constraints.

6. Conclusion and Future Work

In this research, we proposed an optimization technique for the simulation algorithm of HyLaGI. This was achieved through dynamically reducing the size of guarded constraints that appears in the model, based on monotonicity.

Future work of this research includes evaluating the alternating monotonicity approach. Another work to put effort into is exploiting invariants other than monotonicity, for this would enlarge the scalability of this research.

References