BiCGSTAB 法の残差多項式の零点について

多田野 宽人*（筑波大学理工学研究科），桜井 鉄也（筑波大学電子・情報工学系）
tadano@nalab.is.tsukuba.ac.jp

1. はじめに

$n\times n$ 非対称行列 A を係数行列にもつ n 元連立 1 次方程式:

$$Ax = b \quad (1)$$

を BiCGSTAB 法[1]を用いて解くことを考える。BiCGSTAB 法は、n 元連立 1 次方程式の解を高々 n 回の反復で求めることができる。しかしながら、計算過程で誤差が混入すると、理論上の反復回数では解が得られない場合がある。

BiCGSTAB 法の残差ベクトルは、多項式と初期残差ベクトルの積で表すことができる。この多項式を残差多項式と呼ぶ。残差多項式は、反復が収束したとき初期残差ベクトルに含まれる固有ベクトルに対する固有値を零点にもつ。しかしながら、誤差が混入すると、残差多項式は理論的に収束するステップで固有値を零点に与えない場合がある。

本研究の目的は、BiCGSTAB 法の計算過程において混入した誤差が、残差多項式の零点に与える影響について調べることである。

2. BiCGSTAB 法と残差多項式について

n 元連立 1 次方程式(1)を BiCGSTAB 法を用いて解くことを考える。BiCGSTAB 法のアルゴリズムを以下に示す。

BiCGSTAB 法のアルゴリズム

x_0 は初期値、$r_0 = b - Ax_0$；

r_0^{*} は任意のベクトル、such that $(r_0^{*}, r_0^{*}) \neq 0$、e.g., $r_0^{*} = r_{0}^{*} = r_{0}$

set $\beta_{-1} = 0$,

for $k = 0, 1, \cdots$, until $||r_k|| \leq \varepsilon ||b||$ do:

begin

$$p_k = r_k + \beta_{-1}(p_{k-1} - \xi_k A p_{k-1}) \quad (2)$$

$$\alpha_k = \frac{(r_k^*, r_k)}{(r_k^*, A p_k)} \quad (3)$$

$$t_k = r_k - \alpha_k A p_k$$

$$\zeta_k = \frac{(A \xi_k, \xi_k)}{(A \xi_k, A \xi_k)}$$

$$x_{k+1} = x_k + \alpha_k p_k + \xi_k t_k$$

$$r_{k+1} = t_k - \xi_k A \xi_k \quad (4)$$

$$\beta_k = \frac{(r_k^*, r_{k+1})}{(r_k^*, r_k)}$$

end

$R_k(z) は k 次の Lanczos 多項式、$P_k(z)$ は k 次の多項式、$Q_k(z)$ は k 次の加速多項式とする。ここで、加速多項式 $Q_k(z)$ は、

$$Q_k(z) = \prod_{j=1}^{k}(1 - \zeta_j z)$$

de 表される。今、$2k$ 次の多項式 $R_k^{(STAB)}(z), P_k^{(STAB)}(z)$ を,

$$R_k^{(STAB)}(z) = Q_k(z)R_k(z) \quad (5)$$

$$P_k^{(STAB)}(z) = Q_k(z)P_k(z) \quad (6)$$

−1−
とおく。このとき、ベクトル \(r_b \)、\(p_b \) は、

\[
\begin{align*}
 r_b &= R_b^{\text{STAB}}(A)r_0, \\
 p_b &= P_b^{\text{STAB}}(A)r_0
\end{align*}
\]

と表される。多項式 \(R_b^{\text{STAB}}(z) \) は、BiCGSTAB 法の残差多項式である。次節では、残差多項式に誤差が混入した場合について考える。

3. 誤差の混入による残差多項式への影響

係数行列 \(A \) は対角化可能とする。初期残差ベクトル \(r_0 \) に係数行列 \(A \) の固有ベクトルが \(m \leq n \) 本含まされて、

\[
 r_0 = \sum_{j=1}^{m^*} c_j v_j
\]

と表されるとする。ここで、\(c_j \) は複素数を表し、\(v_j \) は係数行列 \(A \) の固有ベクトルを表す。同様に、ベクトル \(r_0^* \) に係数行列 \(A \) の固有ベクトルが \(m' \leq n \) 本含まされて、

\[
 r_0^* = \sum_{j=1}^{m'} d_j v_j
\]

と表されるとする。但し、\(d_j \) は複素数である。次に、\(\mu^{(t)}_k \) と \(\mu^{(t)}_{k'} \) を、

\[
\begin{align*}
 \mu^{(t)}_k &= (r_0^* A^T R_k^{\text{STAB}}(A)r_0), \\
 \mu^{(t)}_{k'} &= (r_0^* A^T P_k^{\text{STAB}}(A)r_0)
\end{align*}
\]

と定義する。\(\mu^{(t)}_k, \mu^{(t)}_{k'} \) を計算すると、

\[
\begin{align*}
 \mu^{(t)}_k &= \sum_{j=1}^{m^*} v_j^* R_k^{\text{STAB}}(\lambda_j \lambda_j^*), \\
 \mu^{(t)}_{k'} &= \sum_{j=1}^{m'} v_j^* P_k^{\text{STAB}}(\lambda_j \lambda_j^*)
\end{align*}
\]

となる。\(\lambda_j \) は係数行列 \(A \) の固有値を表し、\(v_j \) は、

\[
 v_j = \sum_{j=1}^{m^*} \overline{d}_j c_j(w, w_j)
\]

である。また、\(\overline{d}_j \) は \(d_j \) の共役複素数である。

ここで、誤差が混入した状況をわかりやすくするために、多項式 \(W_t^i(z) \) を導入する。多項式 \(W_t^i(z) \) は、

\[
 W_t^i(z) = Q_t(z) R_{t-1}(z)
\]

と定義する。\(W_t^i(z) \) は、(1)の多項式 \(S_t^i(z) \)，\(T_t^i(z) \) を用いて、

\[
 W_t^i(z) = S_t^i(z) R_k^{\text{STAB}}(z) + T_t^i(z) P_k^{\text{STAB}}(z)
\]

を表される。但し、多項式 \(S_t^i(z) \)，\(T_t^i(z) \) は、

\[
\begin{align*}
 S_t^i(z) &= \sum_{j=0}^{l-1} \sigma_{i,j}^i z^j, \\
 T_t^i(z) &= \sum_{j=0}^{l-2} \tau_{i,j}^i z^j
\end{align*}
\]

であり、\(\sigma_{i,j}^i = 1 \) である。多項式 \(S_t^i(z) \)，\(T_t^i(z) \) の係数は、(2l-1)次元連立 1 次方程式：

\[
 \begin{bmatrix} F(i) & G(i) \end{bmatrix} w(i) = h(i)
\]

を満足する値である。ここで、ベクトル \(w(i) \) は、

\[
 w(i) = \left[\sigma_{1,0}^i, \sigma_{2,0}^i, \ldots, \sigma_{l-1,0}^i, \tau_{1,0}^i, \tau_{2,0}^i, \ldots, \tau_{l-1,0}^i \right]^T
\]

であり、ベクトル \(h(i) \) は、

\[
 h(i) = \begin{bmatrix} 0, 0, \ldots, 0, \mu_{i+1}^i, \ldots, \mu_{l-1}^i \end{bmatrix}^T
\]

である。また、(2l-1)×(2l-1)行列 \(F(i) = [F_{ij}] \) と、(2l-1)×(l)行列 \(G(i) = [G_{ij}] \) は、

\[
 F_{ij} = \begin{cases} 0 & \text{for } i + j < l \\
 \mu_{i+j-1}^i & \text{otherwise}
\end{cases}
\]

である。
\[G^{(k)}_{ij} = \begin{cases} 0 & \text{for } i + j \leq l \\ \mu^{(k)}_{i,j,l} & \text{otherwise} \end{cases} \]

で与えられる。以上より、(k+l)回目の反復における残差多項式 \(R^{\text{STAB}}_{kl} (z) \) は、

\[R^{\text{STAB}}_{kl} (z) = W_{ij} (z) \prod_{j=1}^{l} (1 - \zeta_j z) \quad (6) \]

となる。

次に、多項式に誤差が混入した場合を考える。多項式 \(R_{kl}^{\text{STAB}} (z) \), \(P_{kl}^{\text{STAB}} (z) \) に誤差が混入して、\(R_{kl}^{\text{STAB}} (z) \), \(P_{kl}^{\text{STAB}} (z) \) になったとする。このとき、多項式 \(W_{ij} (z) \) にも誤差が混入して、

\[W_{ij} (z) = \tilde{R}_{ij}^{\text{STAB}} (z) + z \tilde{P}_{ij}^{\text{STAB}} (z) \]

になったとする。誤差が混入した後、(k+m)回目の反復において、\(\mu_{i}^{(k)} \) と \(\mu_{i}^{(k+1)} \) が、

\[\mu_{i}^{(k)} = \sum_{j=1}^{l} v_j \tilde{R}_{ij}^{\text{STAB}} (\lambda_j) \lambda_j^i \quad (i = 0, 1, \ldots, 2m-2) \]

\[\mu_{i}^{(k+1)} = \sum_{j=1}^{l} v_j \tilde{P}_{ij}^{\text{STAB}} (\lambda_j) \lambda_j^i \quad (i = 1, 2, \ldots, 2m-1) \]

を満たすとき、

\[R_{kl}^{\text{STAB}} (\lambda_j) = 0 \quad (j = 1, 2, \ldots, m) \quad (9) \]

を満たす。これは、多項式に誤差が混入した場合に、反復を繰り返しても残差が収束したときの残差多項式は、初期残差ベクトルに含まれる固有ベクトルに対する固有値を零点にもつことを示している。

次に、内積計算において誤差が混入した場合を考える。 (k-1)回目の反復で内積計算によって求めた係数 \(\beta_{kl} \)、 \(\zeta_{kl} \) と多項式 \(P_{kl}^{\text{STAB}} (z) \) に誤差が混入し、\(\tilde{\beta}_{kl} \), \(\tilde{\zeta}_{kl} \), \(\tilde{P}_{kl}^{\text{STAB}} (z) \) になったとする。また、k回目の反復で、\(\alpha_{kl} \), \(\xi_{kl} \) と多項式 \(R_{kl}^{\text{STAB}} (z) \) に誤差が混入し、\(\tilde{\alpha}_{kl} \), \(\tilde{\xi}_{kl} \), \(\tilde{R}_{kl}^{\text{STAB}} (z) \) になったとする。このとき、\(\mu_{i}^{(k)} \), \(\mu_{i}^{(k+1)} \) は、

\[\mu_{i}^{(k)} = \sum_{j=1}^{l} v_j \tilde{P}_{ij}^{(k)} \lambda_j^i \quad (10) \]

\[\mu_{i}^{(k+1)} = \sum_{j=1}^{l} v_j \tilde{P}_{ij}^{(k+1)} \lambda_j^i \quad (11) \]

である。これに、\(\tilde{P}_{ij}^{(k)} \), \(\tilde{P}_{ij}^{(k+1)} \) は、(2), (3), (4) より、

\[\tilde{P}_{ij}^{(k)} = R_{kl}^{\text{STAB}} (\lambda_j) + \tilde{\beta}_{kl} (1 - \zeta_{kl} \lambda_j) P_{kl}^{\text{STAB}} (\lambda_j) \]

\[\tilde{P}_{ij}^{(k+1)} = (1 - \tilde{\xi}_{kl}) (1 - \tilde{\zeta}_{kl} \lambda_j) P_{kl}^{\text{STAB}} (\lambda_j) \]

となる。(10), (11)は(7), (8)の形を満たしている。したがって、内積計算で誤差が混入した場合に、残差が収束したときの残差多項式は、初期残差ベクトルに含まれる固有ベクトルに対する固有値を零点にもつことがわかかる。

4. 数値実験

数値実験については、発表時に述べる。

参考文献