Short Communication

Cloning and characterization of sweetpotato MADS-box gene (IbAGL17) isolated from tuberous root

Sun-Hyung Kim*, Tatsuro Hamada, Matoyasu Otani, Takiko Shimada

Research Institute of Natural Resources, Ishikawa Prefectural University, Suematu, Nonoichi, Ishikawa 921-8836, Japan

* E-mail: mongdal@ishikawa-c.ac.jp Tel: +81-76-248-3135 Fax: +81-76-248-4191

Received March 11, 2005; accepted May 25, 2005 (Edited by T. Kohchi)

Abstract A new MADS-box gene, IbAGL17, was isolated from the tuberous root of sweetpotato (Ipomoea batatas (L.) Lam, cv. Kokei 14). IbAGL17 was expressed in vegetative tissues, especially root tissues; thickened pigmented root and tuberous root. On sequence alignment, IbAGL17 fell into the AGL17 subfamily composed of AGL16, AGL17, ANR1, NMHC5 and DEPH125, which share high sequence similarity. A transcript of IbAGL17 in root and petiole was found in the vascular tissues in tissue printing. These results suggest that expression pattern of IbAGL17 may lead to a higher proliferation potential of vegetative tissues and root development in sweetpotato.

Key words: Ipomoea batatas (L.) Lam, MADS-box gene, tuberous root.

During the last decade a huge amount of genetic and molecular information has accumulated, mainly on, Arabidopsis, Antirrhinum and rice, leading to the understanding the complexity of development in higher plants. The initiation of organized development is a complex morphogenetic phenomenon in which extrinsic and intrinsic factors play important roles (Prakash and Kumar 2002). Plant growth and development is governed by signaling networks that connect inputs from environmental cues, hormone signals, and nutrient status. Internal signals such as growth regulators like auxin and cytokinin are also essential during phase transition. Many of these factors interact either directly or indirectly within the events that orchestrate the plant development and organogenesis. Understanding the processes regulating the root development is particularly important for storage organ crops, like radish, potato and sweetpotato. Especially, sweetpotato has a peculiar root organ system, which means that breeding programmes need to be for favorable traits related to storage root production. Knowledge of the genes governing the phase transition on storage organs is poorly characterized and remains unknown in tuber crops. Therefore, investigation of the underlying changes associated with organogenesis will be useful for the study of morphogenesis and for genetic improvement of plants.

Some genes in Arabidopsis seem to play a role during vegetative tissue development, AGL12, AGL19, AGL17 and ANR1 (Rounsley et al. 1995; Zhang and Forde 1998). Interestingly, ANR1 function is related to the development of lateral roots in response to nitrate availability within the soil, thus linking environmental conditions and vegetative development. In addition, the alfalfa genes NMHC5 and NMHC7 (Heard et al. 1997) are expressed in root nodules, root derived structures induced upon symbiotic association with Rhizobium bacteria, indicating the participation of MADS-box genes in developmental programs triggered by external signals (Garcia-Maroto et al. 2000). Recently, the AGL17 subfamily continues to grow, and while these classes of MADS-box genes are largely vegetative in nature, we believe them to be the primary classes of MADS-box genes that hold important keys to the development of whole plants including roots, stems, leaves, and plant vascular system. It is important to note that MADS-box genes currently known to have the functions in vegetative development.

We are interested in characterizing the expression patterns of genes involved in root development of sweetpotato. Sweetpotato has three kinds of root, white fibrous root, thicken pigmented root and tuberous root; the white fibrous root develops into both roots. Tuber development resulted from the emergence of anomalous primary and secondary cambia and a vascular cambium, which enabled rapid cell proliferation for expanded, starch-storing, parenchymatous cells (Lowe and Wilson 1974). It is interesting to understand how morphologically and functionally different roots develop.

As a first step, IbAGL17 was cloned from tuberous root RNA (Ipomoea batatas (L.) Lam, cv. Kokei 14) by RT-PCR using specific oligonucleotides deduced from AGL17 like MADS-box gene fragment (Gene accession number BU691821) and full length cDNA was obtained applying 3′- and 5′-rapid amplification of cDNA ends (RACE). Sequence analyses revealed that cDNA share significant homology with the AGL16, AGL17 and...
AGL17 genes from Arabidopsis and were therefore named *IbAGL17* (*Ipomoea batatas* (L.) Lam. *AGL17*-like) (Gene accession number DQ011557) since it is related to *Arabidopsis AGL17*. *IbAGL17* encode polypeptides consisting of 218 amino acids and show the MADS-box and helical coiled-coil structure of the K-box in the central region, like other MADS-box genes (Figure 1B). The amino acid sequence of *IbAGL17* is 57.6% and 47.2% identical to that of *NMHC5* and *AGL17*, respectively. Phylogenetic analysis of the 22-plant MADS-box genes showed that *IbAGL17* seems to be closely related to *NHMC5* from *Medicago sativa* and *AGL16* and *AGL17* from *Arabidopsis* (Figure 1A). In this subfamily, member tends to share highly similar, expression patterns and function (Theisen et al. 1996).

Southern blot analysis under stringent conditions against sweetpotato genomic DNA revealed over two bands when digested with *BamHI*, *EcoRI*, *EcoRV*, *HindIII* and *KpnI* (Figure 2A). *IbAGL17* may be a high copy-number gene in sweetpotato. It is suggested that...
there are more copies of *IbAGL17* in the sweetpotato genome which is a hexaploid plant. It is unclear at present whether this result is due to the hexaploid and heterozygous nature of sweetpotato. However, it would be interesting to clarify the homology between these copies of *IbAGL17* and whether they have the same strength and expression pattern.

RT-PCR analysis was performed using total RNA extracted from different organs of mature plants. *IbAGL17* are preferentially expressed in leaf, petiole, stem and each root tissues and expressed more predominately in tuberous root (Figure 2B).

To elucidate more precisely the relationship between tuber development and the increased expression, we examined *IbAGL17* in root tissue of sweetpotato from single rooted leaf method (Kim et al. 2002) grown for 60 days using tissue print mRNA hybridization. The mRNA signal of that gene was predominantly in the cambial region (Figure 3). The development of sink activity in sweetpotato roots is related to the proliferation of cells in the vascular cambium (Lowe and Wilson 1974). *IbAGL17* may control or mediate the cell proliferation in sweetpotato root development. However the expression of this gene on flowering has to be studied in detail. Future studies will be conducted to evaluate the mechanisms involved in flowering time or floral tissue development.

Acknowledgements

We wish to thank Megumi Fujita for technical assistance.

References

