Plant Biotechnology
Online ISSN : 1347-6114
Print ISSN : 1342-4580
ISSN-L : 1342-4580
Materials production
Hybrid fiber production: a wood and plastic combination in transgenic rice and Tamarix made by accumulating poly-3-hydroxybutyrate
Noboru EndoKouki YoshidaMiho AkiyoshiSumihide Manji
Author information
JOURNAL FREE ACCESS

2006 Volume 23 Issue 1 Pages 99-109

Details
Abstract

Two genes for acetoacetyl-CoA reductase (phbB) and poly-3-hydroxybutyrate (PHB) synthase (phbC), from Ralstonia eutropha were transformed into rice and Tamarix to change their fiber characteristics by producing PHB in these plants. Expression of the genes was detected by RT-PCR. The enzyme activity of phbB was confirmed by measuring NADPH-dependent acetyl-CoA consumption. Western blot analysis was used to detect the protein product of phbC. PHB accumulated in the transformed rice to an average level of 3 mg g−1 dry weight. Similar levels were detected in the transformed Tamarix. Wood and plastic combination (WPC) boards were prepared from the transformed rice and Tamarix. Differential scanning calorimetry (DSC) analysis of rice WPC board measured a melting point (Tm) that was distinct from those of boards made of 100% PHB or PHB-blended cellulose. A unique DSC peak was present for the sample of transformed rice. A measure of pressure deformation showed a higher compression resistance in the sample made of transformed rice and the PHB-blended sample. Analysis of thermal extension showed enhanced stabilities for the PHB-blended sample and the samples made of transformed rice and Tamarix. It was also shown that transgenic blending of PHB prevented moisture absorption in samples made from rice and Tamarix. These results indicated that the accumulation of the plastic in the plants results in improved characteristics in the sample boards.

Content from these authors
© 2006 by Japanese Society for Plant Biotechnology
Previous article Next article
feedback
Top