High-level gene expression in differentiating xylem of tobacco driven by a 2.0 kb Poplar COMT2 promoter and a 4×35S enhancer

Enying Liu1,†, Shaobing Peng2,†, Quanzi Li1,3, Ying-Hsuan Sun4, Vincent L. Chiang1, Ronald R. Sederoff1,*

1Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 29695, USA; 2College of Forestry, Northwest A&F University, Yangling, ShanXi 712100, China; 3College of Forestry, Shandong Agricultural University, Shandong 271018, China; 4Department of Forestry, National Chung Hsing University, Taichung 40227, Taiwan

*E-mail: Ron_sederoff@ncsu.edu Tel: +1-919-513-0073 Fax: +1-919-515-7801

Received November 15, 2012; accepted February 13, 2013 (Edited by M. Yamaguchi)

Abstract Promoter constructs with high levels of xylem specific expression are needed to obtain efficient expression of candidate genes, microRNAs (miRNAs) and artificial microRNAs (amiRNAs) for the genetic modification of wood properties. The gene for caffeic acid O-methytransferase (PtrCOMT2) has the second most abundant transcript level of all the genes in monolignol biosynthesis in Populus trichocarpa and a high level of specificity in differentiating xylem. To characterize the PtrCOMT2 promoter, we cloned a short (2.0 kb) and a long (3.3 kb) promoter segment and compared their expression using GUS as a reporter gene in the differentiating xylem of Nicotiana tabacum. Both the 2.0 kb and the 3.3 kb promoter segments showed high specificity for differentiating xylem in this heterologous system. GUS activity increased as much as 5 times when the 4×35S enhancer was inserted in front of the 2.0 kb promoter, but GUS activity was only increased 2 times when the enhancer was inserted behind the promoter. The enhancer inserted upstream reduced the expression of the 3.3 kb promoter. While expression of some of the enhancer-plus-promoter constructs increased expression, there was a loss of specificity.

Key words: PtrCOMT2 promoter, xylem-specific, 4×35S enhancer, woody plants, genetic engineering.

The promoter of a gene is one of the most important factors affecting the abundance and tissue specificity of heterologous protein production (Streatfield 2007). Tissue-specific promoters are required when constitutive expression of proteins in plants is undesirable or when tissue specific regulation of gene expression is needed. For example, in wheat, constitutive expression of a Bacillus subtilis xylanase and an Aspergillus niger ferulic acid esterase, reduced growth and induced sterility, while endosperm-specific expression of these two enzymes did not (Harholt et al. 2010). Similarly, the expression of the same fungal ferulic acid esterase in tall fescue was improved with specific or inducible promoters compared to constitutive promoters (Buanafina et al. 2008).

High-level specific expression is important when miRNAs are used as dominant suppressors of gene activity to study gene-specific function. MiRNA suppressors act as leaky mutations because the level of suppression depends upon the level of miRNA produced. The higher the level of miRNA, the higher the level of suppression expected.

There are many genes involved in wood formation, and a substantial fraction are genes of unknown function. Inverted repeat RNA (RNAi) and amiRNA-mediated gene silencing have been used to study gene function in wood formation (Coleman et al. 2008; Shi et al. 2010a). Many genes related to wood formation are also essential for stress responses, disease resistance and other metabolic pathways (Chen et al. 2000; Shi et al. 2010b). For these reasons, strong xylem-specific promoters would advance studies of gene function in wood formation and would also advance the technology of engineering proteins to modify wood properties.

Shi et al. (2010b) identified 18 xylem-specific genes in P. trichocarpa encoding monolignol biosynthesis enzymes during wood formation. Among the 18 genes, PtrCOMT2 encodes a single caffeic acid O-methyltransferase that catalyzes the 3′OH methylation of caffeate, 5-hydroxyferulate and 5-hydroxyconiferyl aldehyde for the biosynthesis of monolignols. PtrCOMT2

† These authors contributed equally to this work.

This article can be found at http://www.jspcmj.jp/
PUBLISHED ONLINE MAY 24, 2013
COMT promoters from maize, tobacco and birch were reported to be xylem-specific and responsive to diverse biotic and abiotic stresses (Capellades et al. 1996; Tiiminen et al. 2007; Toquin et al. 2003). Here, we report on the expression of two cloned promoter fragments derived from the PtrCOMT2 gene and compare their activity using GUS as a reporter in the heterologous system of N. tabacum differentiating xylem. We have followed the expression of these constructs in tobacco because of the relatively short time needed to obtain the differentiating xylem and the relative conservation of tissue specificity previously observed between these two species (Tiiminen et al. 2007; Toquin et al. 2003). We have tested these promoter fragments with and without insertion of a 4×35S enhancer (Kay et al. 1987) and have found that the 2.0 kb PtrCOMT2 promoter with the 4×35S enhancer inserted in front of the promoter conferred the highest GUS expression.

Materials and methods

Plant materials

Tobacco (N. tabacum) KY14 seeds were sterilized with 10% Clorox for 10 min and rinsed five times with sterile water. The sterile seeds were spread onto a solid 1/2 strength MS medium (Murashige and Skoog 1962) supplemented with 20 g l⁻¹ sucrose, 1× B5 vitamins (Gamborg et al. 1968) and 100 mg l⁻¹ myo-inositol. All plants were kept at 25°C under a 16/8 h light/dark cycle. P. trichocarpa (Nisqually-1) genomic DNA was isolated from fresh leaves with a DNeasy Plant Mini kit (Qiagen, Alameda, CA, USA). Vector constructs were maintained in Escherichia coli TOP10 and Agrobacterium tumefaciens C58.

Vector construction

Two fragments, a 2.0 kb proximal and a larger overlapping 3.3 kb fragment, of the PtrCOMT2 (GeneBank accession no. EU603317.1) promoter were chosen, based on the genomic sequence of P. trichocarpa (Figure 1) (Tuskan et al. 2006). Genomic DNA was used to amplify both fragments. The primers for the 2.0 kb promoter fragment were 5’-AAGCTTTCATT CGA TCA AGG AAA TTA ACA CC-3’ (2.0kbF) and 5’-GGATCCTCT AGA AAC AAA AGG TTG AAG AAG GTG -3’ (2.0kbR), and the primers for the 3.3 kb promoter fragment were 5’-AAGCTTGTC TCA GTT TCC GTA TTA CGA CTT G -3’ (3.3kbF) and 5’-TGGATCCGGA AAC AAA AGG TTG AAG AAG GTG -3’ (3.3kbR). A HindIII restriction site (underlined) was added to the 5’ end of both promoter fragments and a BamHI site (underlined) was added to the 3’ end of both fragments during amplification. Both

promoter fragments were cloned into pGEM-T easy vectors (Promega, Madison, WI, USA), with E. coli TOP10 as the host strain, and were confirmed by sequencing. The 4×35S enhancer fragment was excised with EcoRI from pTAG-8 (Hsing et al. 2007), cloned into pBluescript II Sk (+) (Stratagene, La Jolla, CA, USA), and was confirmed by sequencing, giving SK-35S. To introduce a HindIII restriction enzyme site at the 3’ flank of the 4×35S enhancer, we used another construct, pCR4-EuCesA2P, in which a 1.7 kb eucalyptus cellulose synthase gene promoter was cloned in the pCR4 TOPO vector (with a HindIII site and a XbaI site at each end). The promoter was excised with Pmel/XbaI from pCR4-EuCesA2P and inserted in SK-35S, which was digested with SmaI/XbaI, resulting in SK-35S-CesA2P.

Constructs A and D were obtained by replacing the 35S promoter in pBI121 with the two promoter fragments excised from the pGEM-T easy vector at the HindIII/BamHI sites. The 4×35S enhancer fragment was excised from SK-35S-CesA2P with HindIII and cloned in front of the PtrCOMT2 promoter at the HindIII site of constructs A and D, resulting in constructs C and E. Similarly, the 4×35S enhancer fragments were excised from SK-35S with EcoRI and cloned behind the PtrCOMT2 promoter at the EcoRI site of construct A, resulting in construct B. These five constructs were confirmed by sequencing (Figure 2).

Plant transformation

Transformation of the constructs into tobacco plants was performed using the A. tumefaciens-mediated leaf disc method of Horsch et al. (1988) and with our derivatives of the binary vector pBI121 (Chen et al. 2003; Figure 1). Transformed cells were selected on medium containing 50 mg l⁻¹ kanamycin and were regenerated into plants (Horsch et al. 1988). The plants were moved to a greenhouse and were maintained for two months, when plant stems were collected for expression analysis and enzyme assays.

qRT-PCR

Total RNA was extracted from the differentiating xylem of transgenic tobacco plants using RNeasy Plant Mini Kits (Qiagen, Alameda, CA, USA) and genomic DNA was removed with RNase-free DNase I (Promega, Madison, WI, USA). 150 ng of total RNA was reverse-transcribed to cDNA with TaqMan Reverse Transcription Reagents (Roche, Mannheim, Germany). Real-time PCR was conducted using an Applied
Figure 2. Schematic description of the constructs with selected fragments of the *PtrCOMT2* promoter and the 4×35S enhancer. GUS expression was driven by the 2.0 kb *PtrCOMT2* promoter in constructs A, B and C, while GUS was driven by the 3.3 kb *PtrCOMT2* promoter in constructs D and E. The 4×35S enhancer was inserted in front of *PtrCOMT2* promoter in constructs C and E and was inserted behind the *PtrCOMT2* promoter in constructs B. COMTP2kb, a 1967 bp long segment of the *PtrCOMT2* promoter; COMTP3.3kb, a 3341 bp long segment of the *PtrCOMT2* promoter; GUS, the β-glucuronidase gene; NOS terminator, the nopaline synthase terminator; 35SE, 4×35S Enhancer, containing four tandem repeats of the 35S enhancer.

Biochemical analysis of GUS expression in transgenic tobacco was conducted as described by Vitha et al. (1995). Hand-cut tobacco stem sections and petioles were immersed in a GUS staining solution containing 1 g l⁻¹ 5-bromo-4-chloro-3-indolyl β-d-glucuronide (X-Gluc), 50 mM sodium phosphate buffer (pH 7.4), 0.1% Triton X-100, 10 mM EDTA, and 2 mM potassium ferricyanide. After 30 min of vacuum infiltration, the sections were incubated in the dark at 37°C for 2 h. Five microliters of each extract was added to a 245 µl reaction containing 1 mM of 4-methylumbelliferyl-β-d-glucuronide trihydrate (4-MUG). The reactions were incubated at 37°C for 2 h. Five microliters of the reaction was transferred to an eppendorf tube, and 995 µl of 0.2 M Na₂CO₃ was added to stop the reaction. The concentration of 4-methylumbelliferone (4-MU) released was measured by fluorescence (excitation at 365 nm, emission at 460 nm) in a TD-700 fluorometer calibrated with a series of 4-MU standards. GUS activity was calculated in units of pmol 4-MU produced min⁻¹ g⁻¹ protein.

Results

Production of transgenic tobacco plants

Using *A. tumefaciens*-mediated transformation, we produced transgenic tobacco plants containing the constructs A, B, C, D and E individually (Figure 2). Fourteen transgenic lines from each construct were planted in the greenhouse and maintained for two months. All the transgenic plants had normal growth and indistinguishable phenotypes compared to wild-type plants, as expression of GUS does not affect the development or growth of transformants (Jefferson et al. 1987).

The 4×35S enhancer increased the expression of the 2.0 kb *PtrCOMT2* promoter

QRT-PCR was performed with total RNA from transgenic tobacco xylem tissue to obtain absolute copy number estimates of the GUS gene transcripts under the control of different promoter constructs (Figure 3). The objective of these experiments was to obtain quantitative estimates of the activity of the promoter derivatives and the relative efficiency of different insertions. COMTP2kb::GUS and COMTP3.3kb::GUS had similar...
GUS gene transcript levels, suggesting that the 2.0 kb promoter contains all of the cis-elements for normal \textit{PtrCOMT2} expression. Addition of the 4×35S enhancer segment increased the activity of the 2.0 kb promoter. The \textit{GUS} expression in 35SE::COMTP2kb::GUS with the 4×35S enhancer inserted in front of the \textit{PtrCOMT2} promoter (Construct C) was as much as 4 times higher than that in COMTP2kb::GUS without the 4×35S enhancer (Construct A). In COMTP2kb::GUS::35SE with the 4×35S enhancer inserted behind the promoter (Construct B), the \textit{GUS} expression was increased up to one and a half-fold compared to the equivalent transgenic plants without the enhancer. Unexpectedly, the \textit{GUS} transcripts were decreased when the 4×35S enhancer was inserted in front of the 3.3 kb promoter (Construct E) compared to that of the 3.3 kb promoter only (Construct D). The different effects of the 4×35S enhancer on the expression activity of \textit{PtrCOMT2} promoter derivatives may be attributed to the location and its different interactions (Zhao et al.1999). We cannot rule out whether DNA rearrangement may have interrupted the function of COMTP3.3kb and resulted in decreased expression in 35SE::COMTP3.3kb::GUS.

Fluorometric assays were also conducted to examine the \textit{GUS} activity in different constructs using total crude protein extracted from tobacco xylem tissues. The highest \textit{GUS} activity came from the 35SE::COMTP2kb::GUS (Construct C) with up to 356.3 units (pmoles 4-MU min$^{-1}$µg$^{-1}$ protein), followed by COMTP2kb::GUS::35SE (Construct B), COMTP3.3kb::GUS (Construct D), COMTP2kb::GUS (Construct A) and 35SE::COMTP3.3kb::GUS (Construct E) respectively (Figure 4). The \textit{GUS} activity was increased by as much as 5 fold in 35SE::COMTP2kb::GUS and as much as 2 fold in COMTP2kb::GUS::35SE compared with COMTP2kb::GUS; while \textit{GUS} activity was decreased by 50% when the 4×35S enhancer was inserted in front of the 3.3 kb promoter.

\textit{PtrCOMT2} is regulated at the transcriptional level

The expression pattern of the tobacco \textit{COMT} II gene is determined in considerable part at the transcriptional level because the changes of \textit{COMT} II promoter activity and endogenous \textit{COMT} II enzyme activity are correlated (Toquin et al. 2003). Our study showed that the expression of the heterologous \textit{PtrCOMT2} promoter is also regulated at the transcriptional level, because the \textit{GUS} enzyme activity in the \textit{GUS} fluorometric assays for all constructs conducted using tobacco xylem tissues was strongly correlated ($R^2=0.885$) with the \textit{GUS} transcript level obtained by qRT-PCR (Figure 5).

The 4×35S enhancer affected the specificity of the \textit{PtrCOMT2} promoter

Promoter specificity is a primary criterion of the utility of a promoter in genetic engineering. For example, the non-floral expression of a cytotoxin-containing construct intended to induce sterility in poplar displayed by floral promoters can cause poor growth of transgenic trees (Wei et al. 2006). Many lignin biosynthetic genes expressed during wood formation may also be expressed during the defense response (Bhuiyan et al. 2009) or in other developmental or metabolic pathways (Savidge 1987). The non-xylem “background” expression of xylem specific promoters used for silencing (or overexpressing)
of other wood biosynthesis genes may affect the stress response or change the development or adaptation of trees. When introducing the 2.0 kb and 3.3 kb *PtrCOMT2* promoter-driving *GUS* gene into tobacco, the transgenic tobacco displayed xylem-specific expression (Figures 6a and 6d). However, after insertion of the 4×35S enhancer, the 2.0 kb *PtrCOMT2* promoter reduced its specificity with increased expression in pith and phloem (Figures 6b and 6c).

Discussion

It may be argued that a heterologous promoter may have species-specific effects on gene expression and such effects have been observed (Nilsson et al. 1996). However, it is important to study multiple promoters in heterologous systems because of the need to use heterologous promoters in “gene stacking” constructs to avoid gene silencing. In other studies we have tested five promoters of *P. trichocarpa* xylem-specific genes, *PtrGT8D1*, *PtrGT8D2*, *Ptr4CL3*, *PtrCAD1*, and *PtrCOMT2*, in tobacco and *GUS* expression driven by these five promoters all displayed a xylem-specific pattern (Li et al. 2011, and unpublished). We have used these five promoters to drive expression of 20 candidate genes in *P. trichocarpa*. The transgene expression is xylem-specific as predicted by the results in tobacco (unpublished). In these cases, at least, tobacco has been a reliable and rapid screen for xylem-specific expression.

The *PtrCOMT2* promoter has the potential to regulate specific high-level gene expression in transgenic woody plants, for genetic engineering of wood properties. In previous work Shi et al. (2010b) identified four motifs, including one XL-13, one XL-12, and two X-3 core motifs, in the *PtrCOMT2* promoter involved in abundant xylem-specific expression. The sequences and position of the four motifs are shown in Table 1. These four motifs are among the five motifs identified in the promoters of all the key monolignol biosynthesis genes in *P. trichocarpa* (Shi et al. 2010b). These motifs are similar in sequence to *cis*-regulatory elements previously identified in lignin genes or vascular gene expression in poplar, Arabidopsis and other plant species (PLACE: http://www.dna.affrc.go.jp/PLACE/; Higo et al. 1999) and are usually located within the proximal 600 bp of the translation start site (Shi et al. 2010b).

The utility of a promoter depends not only on its specific activity, but also on the extent that it has been characterized in different genetic environments. In previous studies directed to the genetic modification of wood properties, the most widely used promoter constructs have been driven by the constitutive CaMV 35S promoter (Baucher et al. 1998; Coleman et al. 2008; Hu et al. 1999; Zhong et al. 2000). Xylem-specific promoters such as that of cinnamyl alcohol dehydrogenase (CAD) (Feuillet et al. 1995; Jouanin et al. 2000; Wagner et al. 2009), phenylalanine ammonia-lyase (PAL) (Gray-Mitsumune et al. 1999; Guo et al. 2001), 4-coumarate: CoA ligase (4CL) (Li et al. 2003), caffeoyl CoA-3-o-methyltransferase (CCoAOMT) (Chen et al. 2000), and caffeate/5 hydroxyferulate O-methyltransferase (COMT) (Tiimonen et al. 2007) were studied and applied to modifying wood properties. However, not all these promoters were ideal for genetic engineering of woody plants. Reduced growth was observed when a constitutive CaMV 35S promoter was used to down-regulate *CCR* and when the poplar 4CL1 gene was used to drive antisense 4CL1 in a poplar

![Figure 5](https://example.com/figure5.png)

Figure 5. The relationship of GUS activity and the gene transcript copy number of *GUS* gene transcripts in the differentiating xylem in all the constructs. Separately, R^2 values are 0.768, 0.629, 0.926, 0.926 and 0.978 for constructs A, B, C, D, and E, respectively.

![Figure 6](https://example.com/figure6.png)

Figure 6. GUS histochemical assays of stem cross sections from transgenic tobacco. a, Construct A (COMTP2kb::GUS); b, Construct B (COMTP2kb::GUS::35SE); c, Construct C (35SE::COMTP2kb::GUS); d, Construct D (COMTP3.3kb::GUS); e, Construct E (35SE::COMTP3.3kb::GUS); f, WT(wild type). X: xylem. P: pith.

Table 1. The sequences and positions of motifs in the *PtrCOMT2* promoter.

<table>
<thead>
<tr>
<th>Motif</th>
<th>Position</th>
<th>Sequence</th>
<th>Strand</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_3 (1)</td>
<td>−1801</td>
<td>GGTGGGGGGGT</td>
<td>Negative strand</td>
</tr>
<tr>
<td>X_3 (2)</td>
<td>−207</td>
<td>GGTAGGGAGT</td>
<td>Positive strand</td>
</tr>
<tr>
<td>XL_12</td>
<td>−156</td>
<td>GGGACCAACC</td>
<td>Positive strand</td>
</tr>
<tr>
<td>XL_13</td>
<td>−154</td>
<td>GTGGTGGTGC</td>
<td>Negative strand</td>
</tr>
</tbody>
</table>

Copyright © 2013 The Japanese Society for Plant Cell and Molecular Biology
hybrid (P. tremula×alba) (Leple et al. 2007; Voelker et al. 2010). Only a 2-fold increase of COMT activity was obtained when either a construct with a double CaMV 35S promoter or a eucalyptus CAD promoter was used to overexpress COMT in a hybrid poplar (P. tremula×alba) (Jouanin et al. 2000). CAD promoters may have expression in other tissues such as leaves (Feuillet et al. 1995) and therefore ectopic expression of the CAD promoter may affect the normal growth of transgenic trees.

We have used the Cauliflower Mosaic Virus (CaMV) 35S enhancer in our experiments because it is well known to increase expression in many chimeric promoters (Kay et al. 1987; Mitsuhara et al. 1996). Its high level of expression made possible T-DNA activation tagging to overexpress and identify regulators of metabolic pathways and to identify critical genes controlling plant growth and development (Weigel et al. 2000). The 35S enhancer activates transcription of adjacent genes both upstream and downstream of its insertion site (Borevitz et al. 2000; van der Fits et al. 2001). In Arabidopsis, activation was detected at distances up to 3.6 kb by a tetrameric 35S enhancer (4×35S) and within 12.5 kb in rice by a 35S enhancer octamer (Hsing et al. 2007; Weigel et al. 2000). Borevitz et al. (2000) isolated a bright-purple Arabidopsis mutant, in which an adjacent CaMV 35S enhancer activated the PAP1 MYB transcription factor. This mutant displayed broad transcriptional activation of the pathway for biosynthesis of phenylpropanoid natural products in all vegetative organs throughout plant development Busov et al. (2003) transformed a hybrid poplar (P. tremula×alba) with a 4×35S construct to create a population of trees to screen for mutant phenotypes by activation tagging. They identified a gene for a gibberellin oxidase that regulates tree height (Busov et al. 2003).

In most cases, the timing and specificity of expression of genes in activation tagged mutants is not changed compared to the wild type (Jeong et al. 2002; Weigel et al. 2000). Beilmann et al. (1992) and Zhao et al. (1999) found that the CaMV 35S enhancer can have synergistic interactions with the truncated PR-1 promoter and the plasma membrane H+-ATPase pma4 transcription promoter from Nicotiana plumbaginifolia and that it may have brought some characteristics of the CaMV 35S promoter to the chimeric promoters. Although the expression specificity of the PtrCOMT2 promoter was affected by a 4×35S enhancer in our study, the insertion of the enhancer in front of the 2.0 kb PtrCOMT2 promoter greatly increased gene expression, expanding the potential for the engineering of candidate genes in trees.

While many enhancers direct very precise tissue-specific expression, enhancer–promoter crosstalk is known to alter promoter specificity (Singer et al. 2010a, b; Singer and Cox 2013; Stacy et al. 2013; Zheng et al. 2007). The CaMV 35S enhancer can change the transcription initiation site in the promoter of the reporter gene and also its specificity (Singer et al. 2010a). In our experiments the PtrCOMT2 promoter specificity was observed to change when the 35S enhancer was inserted either in front or behind the 2 kb PtrCOMT2 promoter, but did not change the specificity of the 3.3 kb promoter. It is possible that in the former case the 35S enhancer is closer to the initiation site and therefore capable of activating GUS expression. More work needs to be done to increase our understanding of the mechanisms that underlie enhancer–promoter interactions in plants.

Acknowledgements

We thank Su-May Yu of the Institute of Molecular Biology, Academia Sinica, Taiwan, for providing pTAG-8 containing the 4×35S enhancer fragment. We are grateful to the China Scholarship Council for providing a visiting scholarship to Shaobing Peng. This work was supported by the Southeastern Sun Grant Initiative Competitive Grants Program and by the National Science Foundation, Plant Genome Research Program (DBI-092391), USA.

References

cloning T-DNA insertion from transgenic plants. Mol Breed 11: 287–293
High-level gene expression in differentiating xylem.

