Genetic disruption of CRC 12S globulin increases seed oil content and seed yield in Arabidopsis thaliana

Yuki Fujiki, Kazumasa Kudo, Hirofumi Ono, Masumi Otsuru, Yasuyo Yamaoka*, Mutsumi Akita, Ikuo Nishida*

Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
*E-mail: nishida@molbiol.saitama-u.ac.jp Tel: +81-48-858-3623 Fax: +81-48-858-3384

Received February 17, 2013; accepted March 5, 2013 (Edited by T. Demura)

Abstract Oils and proteins represent two major carbon reserves within oil seeds. Attempts to increase seed oil production through the genetic suppression of seed protein, however, have generally been unsuccessful. In those experiments, the total protein content remains stable because of compensation by storage proteins from different gene families. Arabidopsis thaliana may offer a solution to this problem, as only a small number of 12S-globulin and 2S-albumin proteins, which are major seed storage proteins, are found in these seeds. We obtained T-DNA-tagged mutants for the major 12S-globulin genes, CRA1, CRB, and CRC, and found elevated levels of oil in crc seeds. This was associated with the transcriptional upregulation of genes encoding the LEC2 and WR1 transcription factors, diacylglycerol acyltransferase (DGAT1), and plastidial pyruvate kinase β subunit 1 (PKp-β1), all of which are important for oil production. Furthermore, cra1, crb, and crc single-mutant plants developed substantially more branches, thereby producing more flowers and fruits than did wild-type plants. Thus, cra1, crb and crc mutations resulted in 19%, 22% and 41% increases in seeds and 24%, 25% and 62% increases in oil content per plant, respectively, as compared with wild-type plants. Our results suggest that the perturbation of storage-protein synthesis in developing seeds of Arabidopsis influences the capacity of whole plants for producing sink organs such as shoot branches, flowers and seeds.

Key words: Arabidopsis, 12S globulin, seed yield, shoot branching, triacylglycerol.

Proteins, starches, and oils (triacylglycerol; TAG) are three major carbon reserves within seeds. In oil seeds, starches accumulate during the earliest stage of seed development, whereas proteins and oils accumulate during middle and late stages (Ruuksa et al. 2002). Pathways involved in protein or oil synthesis may compete for translocated carbons, as protein levels negatively correlate with oil content in oil seeds (Grani et al. 1977; Kennedy et al. 2011). One strategy to increase seed oil content, therefore, is to genetically suppress protein levels. Kohno-Murase et al. (1994, 1995) demonstrated that levels of cruciferin (a 12S globulin) or napin (a 2S albumin) can be suppressed in oilseed rape (Brassica napus L.) using antisense RNA technology. When cruciferin levels are reduced, however, napin levels are elevated, and vice versa. Similarly, knock down of a major seed storage protein in soybean (Glycine max) or rice (Oryza sativa) promotes the synthesis of other storage proteins (Kawakatsu et al. 2010; Schmidt et al. 2011). Because of these compensatory responses, a plant expressing a small number of seed storage proteins is required to effectively evaluate negative correlations between protein and oil content in seeds.

In Arabidopsis (the Columbia strain), major seed storage proteins are composed of 12S globulin and 2S albumin, which constitute ~87% and 10% of total seed protein, respectively (Higashi et al. 2006). The 12S globulins are encoded by Cruciferin A1 (CRA1, At5g44120), Cruciferin B (CRB, At1g03880), Cruciferin C (CRC, At4g28520), and Cruciferin 2 (CRU2, At1g03890), whereas the 2S albumins are encoded by five genes named At2SI to At2S5 (Fujiwara et al. 2002; Gruis et al. 2002). CRA1 and CRC each account for >35% of total seed protein, whereas CRB and At2S3 account for 12% and 8% of total seed protein, respectively. In contrast, CRU2 and the other 2S-albumin isoforms are expressed at very low levels under normal growth conditions (Higashi et al. 2006). To evaluate the correlation between protein and oil content in Arabidopsis seeds, therefore, the major 12S-globulin genes CRA1, CRB and CRC represent good targets for disruption.

We isolated T-DNA-tagged lines for CRA1, CRB,
Increased seed yield in Arabidopsis 12S-globulin mutants

and CRC in Arabidopsis and measured protein and oil content within mutant and wild-type seeds. The disruption of a single 12S-globulin gene was compensated for by the upregulation of other major 12S-globulin genes and At2S1. However, we found significantly elevated levels of TAG in crc seeds with concomitant upregulation of key genes involved in TAG production. Interestingly, branching was elevated in each of the 12S-globulin mutants, thereby increasing the number of both flowers and fruits. Thus, disruption of a 12S-globulin gene results in increased seed numbers and seed oil yields per plant as compared with wild type. We discuss how the suppression of 12S-globulin synthesis within developing seeds may affect the capacity of whole plants for producing sink organs such as shoot branches, flowers and seeds.

Materials and methods

Plant materials and growth conditions

Arabidopsis thaliana (Columbia strain) seeds were sown on 100 g of peat moss (Golden Peatban; Sakata Seed Corporation, Yokohama, Japan), which had been cracked and placed into a plastic pot (8 cm long, 8 cm wide, and 6.5 cm deep). Plants were grown at 22°C under a 16-h day/8-h night photoperiod. The photon flux density was ~150 µmol m−2 s−1. T-DNA-tagged lines for cra1 (Salk_002668), crb (Salk_045987), and crc (GK-283D09) were obtained from the Arabidopsis Biological Resource Center (http://abrc.osu.edu/). Homozygous mutants were identified by PCR using gene-specific (Supplemental Table S1) and T-DNA-specific primers.

Seed productivity measurements

Seed productivity was measured using 5- and 6-week-old plants. These measurements included the number of stems that developed from a rosette base, the number of axillary branches that developed from the stems, and the number of opened flowers and fruits. Under growth conditions described above, flowering was essentially finished after 6 weeks. All seeds were harvested using a handmade plastic apparatus, which resembles the Arasystem (Lehle Seeds, Texas, USA).

Reverse transcription-polymerase chain reaction (RT-PCR) analysis

Developing seeds were collected from fruits 8–10 or 12–14 d after flowering (DAF). Total RNA was extracted from each sample using the RNeasy Plant Mini Kit (Qiagen, Tokyo, Japan), and cDNA was synthesized using the Transcriptor First Strand cDNA Synthesis Kit (Roche Applied Science, Tokyo, Japan). RT-PCR was performed on a PTC-100 thermal cycler (Bio-Rad, Tokyo, Japan) using Ex-taq polymerase (Takara Bio Inc., Shiga, Japan), gene-specific primers (Supplemental Table S1) and the following number of reaction cycles: 14 for CRA1, CRB, CRC, and 2S1; 24 for FUS3; 30 for LEC2; 24 for WRI1; 23 for DGAT1; 21 for Pkp-β1; and 26 for Ubiquitin10 (UBI10). Each cycle consisted of 94°C for 30s, 56°C for 30s and 72°C for 45s. PCR bands were stained with 1 mg l−1 ethidium bromide, and the intensity of each band was quantified using ImageJ v. 1.46 (http://rsbweb.nih.gov/ij/) and normalized to UBI10.

SDS-PAGE analysis

Fifty dry seeds were frozen in liquid nitrogen in a 1.5-ml plastic tube and ground into powder using a Kontes pellet pestle mortar (VWR International, Illinois, USA). Total protein was extracted using 100 µl SDS buffer containing 100 mM Tris-HCl, pH 8.0; 0.5% SDS; 10% glycerol; and 2% 2-mercaptoethanol. After boiling for 3 min, the sample was centrifuged at 15,000 rpm for 3 min (MRX-150, TOMY, Tokyo, Japan), and the supernatant was collected. Protein content was determined using a Bio-Rad protein assay reagent (Bio-Rad, Tokyo, Japan) with γ-globulin as the standard.

The equivalent of a two-seed aliquot was loaded into each lane and separated by SDS-PAGE using a 12.5% gel. Protein bands were stained using Coomassie Brilliant Blue R-250, and the intensity of each polypeptide band was quantified using ImageJ. The identity of each band was confirmed by MALDI-TOF-MS (Autoflex III, Bruker Daltonics, Yokohama, Japan).

Determining seed-oil content

Total lipids were extracted from seeds using the method from Folch et al. (1957), with modifications. Briefly, 500 seeds were immersed in 1 ml of boiling 2-propanol for 5 min. After the seeds were chilled on ice, chloroform was added (2 ml) and seeds were homogenized using an NS-51 homogenizer equipped with an NS 7 blade (Microtec Co., Ltd., Chiba, Japan). After centrifugation, the supernatant was recovered and the pellet was re-extracted using 3 ml of a mixture of chloroform and methanol (2:1, v/v). After a second centrifugation, the supernatant was recovered and combined with the original supernatant. Then, 1.2 ml of 0.9% KCl was added, and the sample was mixed vigorously. After centrifugation, the lower layer was recovered and evaporated using a rotary evaporator (Eyela, Tokyo Rikakikai Co., Ltd., Tokyo, Japan). Lipid residues were weighed and dissolved in chloroform to a concentration of 10 mg ml−1. Lipid extracts (1 mg) were separated by silica gel thin-layer chromatography using a silica gel 60 glass plate that was 20×20 cm and 0.25 mm thick (Merck, Darmstadt, Germany) and a mixed solvent that contained hexane, diethyl ether, and acetic acid (80:30:1, v/v/v). TAG was identified under UV365 illumination after spraying with 0.01% primuline in 80% acetone. TAG content was quantified using gas chromatography (GC-18A, Shimadzu, Kyoto, Japan) as described (Inatsugi et al. 2002).
Results

Isolation of Arabidopsis 12S-globulin mutants
To suppress 12S-globulin levels, we obtained and purified Arabidopsis T-DNA-tagged mutants for CRA1, CRB, and CRC (Figure 1A). RT-PCR analysis showed that each mutant accumulated no intact mRNA for the corresponding gene in developing seeds (Figure 1B). When mutant seeds were harvested after 6 weeks of plant growth, they were not different from wild type with respect to size, shape, and weight (data not shown).

Polypeptide profiles in wild-type and mutant 12S-globulin seeds
In wild-type seeds, the CRA1, CRB, and CRC polypeptides are processed into α (29.2, 27.4, and 34.7 kDa, respectively) and β (20.9, 20.8, and 21.2 kDa, respectively) subunits (Higashi et al. 2006). When subjected to SDS-PAGE analysis, α subunits were detected at their expected relative masses, whereas β subunits were detected as a single band (Figure 2A). CRU2 polypeptides were not detected in the wild-type protein extracts by our MALDI-TOF-MS analysis. The α-subunit band for CRA1, CRB, and CRC was not detected in protein extracts from cra1, crb, and crc seeds, respectively. As such, each mutant was null with respect to the gene product. Figure 2B shows the relative polypeptide abundance for each lane of Figure 2A. Compared with wild-type seeds, the amount of CRC α subunit was unchanged in cra1 seeds; the amount of CRA1 α subunit was elevated in crc seeds; and the amount of 2S albumin (large subunit) was elevated in crb and crc seeds. This demonstrates that the deletion of some 12S-globulin genes was partially compensated for by the upregulation of other 12S-globulin proteins or 2S albumsins. The total amount of SDS-soluble protein was, however, also reduced in both cra1 and crc seeds as compared with wild type (Figure 3).

TAG content is elevated in crc seeds
TAG was extracted and measured for both wild-type
and mutant seeds. TAG levels were significantly higher in crc seeds than in wild-type seeds, whereas TAG levels were not affected in cra1 seeds and tended to be higher (although not significantly) in crb seeds (Figure 4). The composition of major fatty acids was similar between wild-type and mutant seeds (data not shown), demonstrating that TAG synthesis, but not the synthesis/desaturation of specific fatty acids, was enhanced in crc seeds.

TAG and seed yield are increased in 12S-globulin mutants

Seed germination was not affected in 12S-globulin mutants. In addition, wild-type and mutant seedlings were indistinguishable in terms of growth, bolting, and flower production (data not shown). After 5 weeks of growth, however, each line of 12S-globulin mutants had notably more stems and shoot branches than wild type (Figures 5A, B), and crb and crc single-mutants produced 45.7% and 47.0% more flowers/fruit than wild type, respectively (Figure 5C). By 6 weeks of growth, cra1, crb, and crc mutants produced 26.8%, 14.3%, and 21.4% more stems than wild type, respectively (Figure 5D). In addition, all 12S-globulin mutants developed more shoot branches, in particular the crc mutants (28%; Figure 5E).

Eventually each 12S-globulin mutant produced more flowers and fruits than wild-type plants (Figure 5F), but the average number of seeds per fruit was not affected (Figure 5G). Thus, 12S-globulin mutants produced more seeds than wild type; in particular, this was true for the crc mutants (40.5% more; Figure 5H). TAG yield per plant also increased by 24.1%, 24.5%, and 62.3% in cra1, crb, and crc mutants, respectively, as compared with wild type (Figure 6).
Disruption of 12S-globulin genes affects the transcript levels of genes related to seed metabolism

We performed RT-PCR analysis of genes related to seed metabolism in wild-type and mutant 12S-globulin seeds. Disruption of CRA1 upregulated the levels of CRC transcripts in developing seeds, and vice versa (Figure 7A). In contrast, CRB disruption did not affect levels of CRA1 or CRC transcripts. Finally, transcript levels for At2S1 were markedly elevated in all mutant 12S-globulin seeds as compared with wild type. These results demonstrate that under these growth conditions the elimination of some 12S-globulin genes is compensated for by the upregulation of other 12S-globulin or 2S-albumin genes.

FUS3 encodes a transcription factor that regulates the expression of 12S-globulin and 2S-albumin genes (Kagaya et al. 2005; Kroj et al. 2003). At early stages of seed development (8–10 DAF), FUS3 transcripts were upregulated in all mutant 12S-globulin seeds as compared with wild type. At later stages of development (12–14 DAF), however, only crc seeds maintained substantially higher levels of FUS3 transcripts than wild-type seeds. At 12–14 DAF the levels of CRA1, CRC, and At2S1 transcripts were highest in crc, cra1, and crc seeds, respectively.

LEC2 and WRI1 are transcription factors that regulate fatty-acid and TAG synthesis (Kroj et al. 2003; Maeo et al. 2009). At 8–10 DAF, levels of LEC2 and WRI1 transcripts were upregulated in all mutant 12S-globulin seeds as compared with wild type (Figure 7B). At 12–14 DAF, however, elevated levels of WRI1 transcripts were maintained only in crc seeds.

Transcripts for DGAT1 and PKp-β1 were elevated in all mutant 12S-globulin seeds as compared with wild type (8–10 DAF). At 12–14 DAF, however, elevated levels of DGAT1 transcripts were maintained only in cra1 and crc seeds. Levels of PKp-β1 transcripts had decreased in all mutants by 12–14 DAF and were lower than those in wild type in cra1 and crb mutants. These results are consistent with data concerning LEC2 and WRI1 that were presented above.

Discussion

We have analyzed Arabidopsis mutants for the 12S-globulin genes cra1, crb, and crc. Disruption of crb increased levels of 2S albumins, whereas crc disruption increased levels of CRA1 and 2S albumins. These protein-level results were supported by RT-PCR analysis, which showed that CRA1 transcripts were elevated in crc seeds and that At2S1 transcripts were elevated in cra1, crb, and crc seeds. In cra1 seeds, CRC transcripts were substantially elevated, but CRC protein levels were not increased. There is a clear difference, therefore, between cra1 and crc mutants.

Correlations between total protein and TAG levels were generally inconsistent between mutant lines. TAG levels were elevated most dramatically in crc seeds, which
is consistent with our finding that crc seeds contained the highest levels of both LEC2 and WRI1 transcripts at 8–10 and 12–14 DAF. TAG levels were not statistically elevated in cra1 or crb seeds, however, despite the upregulation of LEC2 and WRI1 transcript levels at 8–10 DAF. Our data demonstrate that the disruption of some 12S-globulin genes affects the transcription of a wide range of genes involved in seed metabolism, including genes that encode transcription factors (FUS3, LEC2 and WRI1), seed storage proteins (2S albumins), and enzymes involved in fatty-acid and TAG biosynthesis (PK-p1 and DGAT1). Li et al. (2007) reported that the levels of CRC transcripts increase earlier than those of CRA1 and CRB transcripts during seed development. Thus, disruption of CRC could have profound effects on LEC2 and WRI1 transcription during seed development compared to that of CRA1 or CRB. To further understand the effects of 12S-globulin gene disruption on TAG levels in Arabidopsis seeds, we are constructing cra1 crb crc triple mutants.

We found that 12S-globulin mutants produce more flowers than wild type because of enhanced shoot branching. As the growth of both seedlings and plants before flowering was indistinguishable among all tested plants, we speculate that parental plants may monitor in some way the metabolism of developing seeds, and that metabolic alterations within seeds affect the development of sink organs such as shoot branches, flowers and seeds. In Arabidopsis, T-DNA-tagged lines for amino acid permease 2 (AAP2), which is involved in the translocation of amino acids from source to sink tissues and the phloem loading of amino acids (Zhang et al. 2010), exhibit reduced levels of seed storage proteins and increased levels of TAG. In AAP2 mutants, the total seed yield is dramatically increased because of the concomitant increases in the numbers of shoot branches and fruits (Zhang et al. 2010). These phenotypes are similar to those observed for all 12S-globulin mutants. Thus, the inhibition of 12S-globulin synthesis in cra1, crb, and crc mutants may affect the efficiency of amino-acid translocation, thereby upregulating the rate of shoot branching, as is seen with AAP2 mutants. There are a number of factors, however, that can promote shoot branching, including cytokinin (Ongaro and Leyser 2008). Future studies must determine whether cytokinins and other branch-inducing hormones underlie the enhanced shoot branching that characterized 12S-globulin mutants.

In summary, the 12S-globulin mutant crc exhibited increased levels of seed oil. The disruption of 12S-globulin genes also increased the capacity of parental plants for producing sink organs such as shoot branches, flowers and seeds. Further characterization of Arabidopsis 12S-globulin mutants including cra1 crb crc triple mutants is necessary to uncover the molecular link between the disruption of 12S-globulin genes in seeds and the enhanced shoot branching in whole plants. Determining this link may facilitate increased seed oil production. Disruption of 12S-globulin genes might improve oil production in nonfood oil crops such as Camelina sativa, which is a close relative of Arabidopsis. Disruption of 12S-globulin genes in C. sativa is going on in our laboratory.

Acknowledgements

The authors are grateful to the Genesis Research Institute Inc. for financial support (2006–2011). This work was also supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology to IN (no. 21570034 and 24570040) and YF (no. 20770039).

References

