Plant Biotechnology
Online ISSN : 1347-6114
Print ISSN : 1342-4580
ISSN-L : 1342-4580
Original Papers
An improved tolerance to cadmium by overexpression of two genes for cysteine synthesis in tobacco
Michimi NakamuraTomoko OchiaiMasaaki NojiYasumitsu OguraKazuo T. SuzukiNaoko YoshimotoMami YamazakiKazuki Saito
ジャーナル フリー

2014 年 31 巻 2 号 p. 141-147


Contamination of soil by heavy metals such as Cd causes a serious negative impact on agricultural production and human health. Thus, improvement of tolerance to Cd is one of the major challenges in plant biotechnology. In the present study, we have generated transgenic Nicotiana tabacum (tobacco) plants overexpressing both serine acetyltransferase (SAT) and cysteine synthase (CS) [O-acetylserine (thiol)-lyase], which are committed in the last two steps of cysteine (Cys) biosynthesis, by crossing the respective single-gene transgenic plants. Two enzymatic activities were high in these two-gene overexpressing plants, and these plants exhibited more resistance to Cd stress than wild-type and single-gene transgenic plants. The two-gene transgenic plants also exhibited a higher production of phytochelatins (PCs) in an inducible manner by the Cd stress. The levels of free non-chelated Cd were lower in the two-gene transgenic plants than the wild-type and single-gene transformants. The levels of Cys and γ-glutamylcysteine (γ-EC) were also increased in the dual transgenic plants, presumably enhancing the metabolic flow of Cys biosynthesis leading to the ultimate synthesis of PCs which detoxify Cd by chelating. These results suggested that the overexpression of two genes, SAT and CS, could be a promising strategy for engineering Cd resistant plants.

© 2014 by Japanese Society for Plant Biotechnology
前の記事 次の記事