Plant Biotechnology
Online ISSN : 1347-6114
Print ISSN : 1342-4580
ISSN-L : 1342-4580
Original Papers
Integrated transcript and metabolite profiling reveals coordination between biomass size and nitrogen metabolism in Arabidopsis F1 hybrids
Naoya SugiQuynh Thi Ngoc LeMakoto KobayashiMiyako KusanoHiroshi Shiba
Author information
JOURNAL FREE ACCESS
Supplementary material

2021 Volume 38 Issue 1 Pages 67-75

Details
Abstract

Heterosis refers to the improved agronomic performance of F1 hybrids relative to their parents. Although this phenomenon is widely employed to increase biomass, yield, and stress tolerance of plants, the underlying molecular mechanisms remain unclear. To dissect the metabolic fluctuations derived from genomic and/or environmental differences contributing to the improved biomass of F1 hybrids relative to their parents, we optimized the growth condition for Arabidopsis thaliana F1 hybrids and their parents. Modest but statistically significant increase in the biomass of F1 hybrids was observed. Plant samples grown under the optimized condition were also utilized for integrated omics analysis to capture specific changes in the F1 hybrids. Metabolite profiling of F1 hybrids and parent plants was performed using gas chromatography-mass spectrometry. Among the detected 237 metabolites, 2-oxoglutarate (2-OG) and malate levels were lower and the level of aspartate was higher in the F1 hybrids than in each parent. In addition, microarray analysis revealed that there were 44 up-regulated and 12 down-regulated genes with more than 1.5-fold changes in expression levels in the F1 hybrid compared to each parent. Gene ontology (GO) analyses indicated that genes up-regulated in the F1 hybrids were largely related to organic nitrogen (N) process. Quantitative PCR verified that glutamine synthetase 2 (AtGLN2) was upregulated in the F1 hybrids, while other genes encoding enzymes in the GS-GOGAT cycle showed no significant differences between the hybrid and parent lines. These results suggested the existence of metabolic regulation that coordinates biomass and N metabolism involving AtGLN2 in F1 hybrids.

Content from these authors
© 2021 Japanese Society for Plant Biotechnology
Previous article Next article
feedback
Top