Development of a Measurement Technique for Liquid-Solid Flows
Induced by Dispersion Phase with High Concentration

SHIGEMATSU Takaaki
KOHNO Tetsuya

Abstract An image velocimetry technique for measuring fluid motion of liquid-solid flow with high particle density is developed and presented. The new technique, which obtains velocities and directions by connecting path lines of tracers in sequence images captured by high speed cameras, is classified into a kind of particle tracking velocimetry. Detail of the algorithm of the developed image velocimetry, called path line connecting velocimetry (PLCV), is presented. Some results of measuring liquid-solid flows induced by dispersion phase with high concentration are presented.

Keywords: PTV, PIV, Path line connecting Velocimetry, Liquid-solid flow

1. 緒 言
流体と密度がほぼ等しいトレーサーを混入し、
このトレーサー粒子の運動を可視化して得られ
る画像データから流速を計測する方法（画像計測
法）は、個々のトレーサー粒子を追跡する手法
（PTV: Particle Tracking Velocimetry）とトレーサー
粒子群を追跡する手法（PIV: Particle Image
Velocimetry）とに大別される。最近では、両者を
統称してPIVと称されることが多いが、ここでは、
上記のように用語を使い分けることとする。尚、
画像計測法に関する分類は、参考文献[1]〜[5]に
詳細が整理されている。

PIV法は、得られた画像中の任意の領域に含ま
れるトレーサーの分布情報と最も相関の高い領
域を次時刻の画像から抽出し、この領域の移動距
離から流速を計測しようとする手法である。した
がって、任意体積の平均流速が求められることに
なる。これに対してPTV法は、個々の粒子の移
動距離から流速を計測しようとする手法であり、
PIV法に比較すると、撮影・抽出されるトレーサー
粒子が多い場合には計測の解像度が高いと言
うことができる。また、異なる特性を有する複数
の流体が混在する場、すなわち、固体・気体・固
気液相共存場の計測においては、特に界面近傍に
おいては、一般的には、PTV法の方がPIV法よ
りも流速の計測精度が高いと考えられる。

トレーサー粒子を撮影した画像から流速を計
測する画像計測に関する研究では、画像の撮影方
法に工夫が施されているものが多くなく、短時間
内に重要な要素のひとつである。短い露光時間
で撮影（凍結撮影）された個々の粒子を追跡する
方法は粒子追跡度計測法と呼ばれ、一方、比較
的に長い露光時間で撮影（流し撮影）された粒子軌
跡を解析する手法を流線線法と呼ぶ。また、一枚の
画像を撮影するときの露光回数によって、単一
露光（Single Exposure）と多重露光（Multi...
Table 1 Comparison between feature of PTV and PIV

<table>
<thead>
<tr>
<th>流跡線法</th>
<th>解析単位</th>
<th>ベクトル数</th>
<th>処理時間</th>
<th>課題</th>
<th>撮影条件</th>
<th>高速度の計測</th>
</tr>
</thead>
<tbody>
<tr>
<td>粒子追跡法</td>
<td>1 画像</td>
<td>多数</td>
<td>長い</td>
<td>速度方向判別</td>
<td>流し撮影</td>
<td>比較的容易</td>
</tr>
<tr>
<td>2～4 画像</td>
<td>中</td>
<td>短い</td>
<td>過誤ベクトル</td>
<td>凍結撮影</td>
<td>要高性能機器</td>
<td></td>
</tr>
</tbody>
</table>

Exposure）に分類される。

単一露光・流し撮影法で、単一画像から速度場を計測する手法として流跡線法 (Particle Path Line Velocimetry) がある（たとえば、小林ら[6]）。この方法は、直感的に理解しやすいこともあって、画像計測法の確立過程においては多くの研究者が取り組んだ方法である。流跡線法の特徴を整理すると以下のようである。

(1) 単一画像から流速場を求めることができる。

(2) 流跡線画像だけからでは流向が決まらない。

(3) 粒子数が増加すると流跡線が交差し、その分離が困難である。

(4) 流跡線の始点・終点の位置を正確に計測することが困難である。

(5) 三次元計測への拡張が容易である。

(4) については、二次元画像計測ではシート光照明を用いることが多く、流れの三次元性のために粒子がシート光を横切って出てくるために流跡線が十分な長さで観測されないことに起因する。したがって、(4) は流跡線法を二次元計測へと拡張した場合には、自動的に解決される課題である。このような流跡線法の短所に対処する方法として、小林ら[7] は、始点と終点を流線画像として撮影し、その間を流し画像として撮影する多重露光法を提案している。村田ら[8] は、流向の自動計測のために、ドローノーゲーム形でニューラルネットワーク理論を用いた自動流方向計測法を提案している。

現在、一般的に用いられている PTV 法は、単一露光・流線構成法を組み合わせた多枚の画像上のトレーサー粒子を対応づけることによって流速ベクトルを求めめる手法（粒子追跡法）である。粒子追跡法には、連続した数枚の画像から流跡線に相当する滑らかな曲線で結ぶ粒子の組み合わせを抽出する方法（多時刻追跡法）と、粒子の局所的な分布パターンの類似性に基づいて 2 画像間で対応する粒子を抽出する方法（粒子分布パターン追跡法）がある。さらに、これらを併用した解析も行われている。このとき、連続する数枚の画像上で同一粒子を自動的に対応づける方法（自動粒子追跡アルゴリズム: Automatic Particle Tracking）が問題となる。粒子追跡法では、粒子の運動方向を判定する煩雑さはないが、粒子の対応付けを誤ると計測値に誤差のない誤速度ベクトルが発生すること、その対策が課題となる。

木村ら[9]は、流跡線法と粒子追跡法との比較を、Table 1 のように整理している。

2. 流跡線連結法のアルゴリズム

本研究で開発した画像計測システムは、高密度分散性固相（粒子群）を含む流体運動の計測に資するものである。高空間解像度・高時間分解能で計測を行うことを目的として、個々のトレーサー粒子の流跡線を追跡して流れ動運動を解析する PTV 法に分類される方法である。本研究では、流し撮影によって微小時間 Φ 間に移動したトレーサー粒子の流跡線を撮影してその移動量を Φ で除することによって流体の流動速度を求め、連結して撮影された画像中の流跡線を連結することによって流跡線の始点と終点を決定し、流方向を求めようとするものである。

画像の計測に用いたシステムは、(株)フォトロン製 FASTCAM-1280PCI 1K-FM（メモリ 3.84GB）のカメラと、株式会社日本レーザー製 DPSS Green Laser DPGL-5W の可視化連続光源である。カメラの空間解像度は 1280pixel×1024pixel で、時間分解能は 30～1000fps である。また、カメラのシャッタースピードは、最小で 1/1000s、最大でおよそ撮影時間間隔までである。すなわち、たとえば、125fps で画像を撮影するとき、シャッタースピードを 1/125s とすることができる。したがって、シャッタースピードを 1/125s として 125fps の時間分解能で現象を撮影すれば、被写体の運動を連結して撮影することができる（実際には、画像間に 4μs だけ撮影されない時間がある）。

本研究で開発した画像計測システムは、このようなシステムの特徴を利用した手法である。一般に、流跡線を撮影しても、一枚の画像だけでは流向を判別することはできない。したがって、前節で述べたように、流向を判別するための様々な撮
影の工夫が試みられてきたといえる。Fig.1(a)に示すように、流軌線を撮影した画像が1枚しかない場合には、図の左から右へとトレーサーが移動したのか、右から左へと移動したのかを判断することはできないが、Fig.1(b)に示すように、連続して流軌線が撮影された画像がある場合には、1枚目の画像中に撮影されたトレーサーの流動は容易に判別することができる。また、同時に、2枚目の画像中に撮影されたトレーサーの流動を判別することができ、2枚目以後に撮影され対応したトレーサーについては流動が自動的に決定できることになる。

以下に、処理の手順に従って、解析手法の詳細について述べる。

2.1 流軌線の抽出および端点の探査

たとえば、Fig.2に示す図は、斜面上を分散相（ガラスビーズ）が落下しながら水中に突入した直後の映像であるが、この画像には、流体運動の解析に必要な流軌線（トレーサーの軌跡）だけでなく、斜面・ガラスビーズ・気泡・水面などの情報も含まれている。もちろん、これらの情報を利用して構成の粒子群の運動を計測することは可能であると考えられるが、ここでは、このような画像からトレーサー情報だけを抽出して、その情報に基づいて流体運動の計測アルゴリズムを構築することについて述べたい。

本研究で開発したアルゴリズムにおいては、流軌線情報の抽出は以下の手順で行った。
1) Otsu の手法[10, 11]を用いた画像の二値化
2) 8 連結法を用いたラベリング
3) 各被写体の面積の算定
4) 面積による被写体の分割および流軌線の抽出
5) 細線化[12]および端点の探査
6) 再ラベリング

Fig.3 は、このような手順の下で抽出した流軌線情報のみの画像例である。以下のプロセスでは、このようにして二値化・細線化された画像を用いることとする。

2.2 流軌線の端点・発点の決定方法

本研究では、基本的には、時刻 n 枚目の撮影画像と(n+1)枚目の撮影画像を用いる。ただし、2枚目の画像だけではトレーサーの運動方向を決定できない場合には、(n+2)枚目の撮影画像も用いることとする。

便宜上、時刻 n 枚目の撮影画像を Image(n)と呼ぶこととする。Image(n)には、(n−1)Δt ≤ t < nΔt 間のトレーサーの軌跡が撮影されている。

Image(n)の画像中のラベリング番号 i のトレーサーを PL_i と表すことによると、原理的には、PL_i のいずれかの端点（場合によっては発点が一つしか存在しない場合はある）の位置には次時刻の流軌線の端点が撮影されているはずである。すなわち、PL_i と連結する PL_j が求めることが可能であれば、PL_i の端点・始点が決定できることになり、その結果、PL_j の始点・始点も決定できることになる。

そこで、画像 Image(n)中の任意の流軌線 PL_i の端点を求めるために、この端点を中心として連結する流軌線を探索するための領域（探索領域）を設定し、探
考察領域内に含まれるすべての流跡線 PL_{n1} を対象として、PL_{n} との連絡を考えることとする。
(1) Step-1
Image(n)中の任意の流跡線 PL_{n} の端点を求める。
(2) Step-2
求められた PL_{n} の端点を中心に、探査領域 Ωを設定する。PL_{n} の端点数は、1あるいは2のいずれかである（端点数が1の場合には、このトレーサーは静止していたことを意味している）。したがって、PL_{n} に対して1あるいは2個の探査領域を設定し、Image(n+1)上で、この探査領域内に含まれている2-1画素を探査する。したがって、まず、PL_{n} の端点の数と PL_{n} の端点の座標を記憶する。
探査領域 Ωn (n は1あるいは2の値をとる) 毎に、その領域内で検出されている1画素を有するラベリング番号を記憶する。Ωn 内には複数の1画素が含まれている可能性があるが、ラベリング番号が異なっているすべてのラベリング番号を記憶する。これ以後、Image(n+1)の探査領域 Ωn で検出された流跡線を PL_{n+1} の探査領域 Ωn で検出された流跡線を PL_{n+1} と表記することとする。
ただし、前述のように、j1 および j2 は複数の値を有する可能性があることに注意されたい。すなわち、画像 Image(n)中の任意のトレーサーの端点近傍に、画像 Image(n+1)中の複数の流跡線の情報が含まれている可能性があるということで、したがって、探査領域 Ωn 内で検出されたトレーサー数を N_{Ωn} と表すことにすれば、j1 = N_{Ω1} 個の j2 = N_{Ω2} 個の値を持つことになる。
(3) Step-3
ここで、探査・抽出された PL_{n+1} の中から、PL_{n} と連絡させずに最も適切な流跡線を抽出し、PL_{n} の始点・終点を決定する。
a) N_{Ω1} = N_{Ω2} = 0 の場合
流跡線 PL_{n} と連絡させるためにふさわしい流跡線が画像 Image(n)中に存在しないことを、すなわち、PL_{n} と連絡することがで可能な流跡線は Image(n+1)中には存在しないことを意味している。したがって、流跡線 PL_{n} のデータは破棄される。
b) N_{Ω1} = 0 かつ N_{Ω2} = 1 の場合
流跡線 PL_{n} の一端には、連絡することができる流跡線が存在せず、他端には連絡することができない流跡線（連絡流跡線）PL_{n} が唯一存在することを意味している。したがって、探査領域 Ωn 内に存在する PL_{n} の端点が始点、探査領域 Ωn 内に存在する PL_{n} の端点が終点であると決定する。このとき、同時に、探査領域 Ωn 内に存在する PL_{n} の端点が始点、他端が終点であると決定する。
c) N_{Ω1} = 1 かつ N_{Ω2} = 0 の場合
b)の場合と同様に、探査領域 Ωn 内に存在する PL_{n} の端点が終点、探査領域 Ωn 内に存在する PL_{n} の端点が始点、探査領域 Ωn 内に存在する流跡線 PL_{n+1} の端点が始点、他端が終点であると決定できる。
d) N_{Ω1} = 0 かつ N_{Ω2} = 1 の場合
流跡線 PL_{n} については、探査領域 Ωn 内にある端点が始点、探査領域 Ωn 内にある端点が終点であると決定できるが、連結流跡線を唯一に決定することはできない。この段階で、PL_{n} の流方向を決定するという本処理の目的は達成できている。本手法の計算効率を考慮すれば、この段階で連結流跡線を特定しておくと計算効率がよいので、後述の最適連結流跡線選定法によって、可能な限り連結流跡線を選定する。
e) N_{Ω1} > 1 かつ N_{Ω2} = 0 の場合
d)の場合と同様に、流跡線 PL_{n} については、探査領域 Ωn 内にある端点が始点、探査領域 Ωn 内にある端点が始点であると決定できる。最後に、連結流跡線選定法を用いる、複数の連結補助流跡線 PL_{n} の中から最も適切な連結流跡線を抽出しなければならない。
f) N_{Ω1} > 1 かつ N_{Ω2} > 1 の場合
このような場合には、2枚の画像だけで PL_{n} の始点および終点を決定することはできないので、Image(n+2)を用いる。Image(n+2)に対して、2.1の操作を施す。さらに、本節の上記の処理を行い、PL_{n+1} に対する連結補助流跡線 PL_{n+2} を求める。3時刻間における連結トレーサー候補の組み合わせ PL_{n} ～ PL_{n+2} ～ PL_{n+1} を考慮し、この組み合わせが唯一解する場合には、それぞれのトレーサーの始点と終点が決定できる。3時刻間の流跡線の連結が複数得られる場合には、後述の最適連結流跡線選定法を用いて連結補助流跡線を抽出する。一方、最適連結法を用いた場合に連結補助流跡線がなくなる場合には、PL_{n} に対する処理は施さず、計測データから除去する。
g) PL_{n} が端点を1つしか持たず、N_{Ω1} > 1 の場合
f)と同様の処理を行う。
2.3 最適連結流跡線選定法
流跡線 PL_{n} に連結させようとする次時刻の流跡線の候補 PL_{n+1} が複数個存在するとき、以下的手順で連結流跡線を抽出する。
連結補助流跡線 PL_{n+1} のうち、PL_{n} の着目端点 (終点)との距離が最も近いものを、最適連結流跡線と判断する。この結果、複数の最適連結流跡線が存在する場合には、次式で求められる流量変化量 θ, および、流速変化量 n を求め、それぞれが最大値 θ, n 以下であれば最適連結流跡線と判断する。
ここに、\mathbf{PL} は流跡線ベクトルを表す。これらの処理を行っても、尚、連結状態が流跡線を唯一に決定することができない場合は、この段階では連結流跡線を特定しないことにする。ところで、流向の決定できなかった連結状態流跡線 \mathbf{PL}_{k}^{*} は、次時刻の連結操作によって、改めて始点および絵点を決定する作業が行われることになる。

2.4 既連結流跡線と未連結流跡線

上記の処理を行った結果、撮影画像 $\text{Image}(n+1)$ 中には、撮影画像 $\text{Image}(n)$ 中の流跡線 \mathbf{PL}_{k} に連結された流跡線（既連結流跡線）と、連

結されていない流跡線（未連結流跡線）が混在することになる。既連結流跡線は始点と終点が決定されているので、$\text{Image}(n+2)$ から既連結流跡線を求める際には、終点のみに探査領域を設定して上記の作業を行えばよい。一方、未連結流跡線については、上記と全く同様の作業を行わなければならない。既連結流跡線が多い程、処理速度は速くなる。

2.5 誤ベクトルの検出法とその修正法

本研究で提案する流跡線連結法は、粒子の対応付けや流向判別に関わる原理が簡単である。しか

(1) トレーサー抽出精度
(2) 始点・終点の誤判断

のような要因で、ときには誤ベクトルが発生する可能性がある。前者は、トレーサー密度が多い場合やトレーサーの移動速度に対して露光時間が短く複数のトレーサーが重なることが多くなり、適切な端点位置を決定することができないことに起因する。したがって、複数のトレーサーが交差した状態で撮影された画像から、それぞれのトレーサーの端点を適切に判別する手法の開発が必要となる。江藤ら[13]は、粒子マスク相関法（Particle Mask Correlation Method, PMC 法）を開発して、高精度で粒子画像を抽出する方法を提案している。この PMC 法は、撮影されたトレーサー画像から、円形の粒子画像の輝度分布テンプレート（粒子マスク）との相間が高いものを粒子画像として抽出する方法で、近接している複数の粒子から個々の粒子情報が抽出できる手法である。この手法は、対象とするトレーサー画像が円形であり方向性を持たないことが大きな特徴であり、この手法を流跡線トレーサーの抽出にそのまま用いると処理時間がかかり現実的ではない。応流線連結法に適した新たなトレーサー抽出法の開発が望まれる。後者は、任意の流速の両端点、次時刻の連結状態トレーサーが抽出され、さらに、対応付けを誤ったために発生するものである。このとき、トレーサーの端点は正確に求められているので、流向の修正を行うだけでよい。

現段階では、本研究で開発した PLCV 法の誤ベクトルの修正は、後者の要因によって発生する誤ベクトルの流向の修正のみにとどまっている。まず、空間情報のみを用いて誤ベクトルの判定を行った。まず、任意の流跡ベクトルの始点を中心とする一辺長が L_{k} の正方形探査領域を設定して、この検査領域内に存在する全流跡ベクトルを対象として、着目しているベクトルとの流れ方向が θ_{i} 以上異なるものを合計 P_{k} を求め、この P_{k} がある閾値よりも大きい場合には、着目ベクトルの流れ方向が誤りであると判断し、始点と絵点を入れ替えめるものである。このとき、P_{k} は検査領域内に存在するベクトル数に大きな影響を受ける。そこで、検査領域内に存在するベクトル数 N_{c} がある閾値よりも多い場合には、検査領域を $L_{k} > L_{i}$ に拡大して、上記と同様な判定を行うこととする。

次節の適用例では、$L_{1} = 0.5 \text{cm}$、$L_{2} = 1.0 \text{cm}$、$\theta_{i} = 150^{\circ}$、$P_{k} = 0.7$、$N_{c} = 10$ として解析を行った。

3. 高濃度液液混相流場への適用例

本研究で開発した流跡線連結法を用いて、自由液面を有する固液液混相流場への適用を試みた。初期状態には水面上に存在した粒子群が斜面上を運動して水中に突入し、水面の大変形を伴いながら
Fig. 5 Measured velocity vectors near water surface.

ら、水中を運動する様子を解析した。一例をFig.5〜Fig.7に示す。Fig.5〜Fig.7は、斜面角度は30度で、初期状態として比重2.65、体積\(V = 13.7 \times 10^{-3} \text{m}^3/\text{m} \)のガラスビーズを静水面直上に配置して解放した後の、ガラスビーズの挙動および流体運動の解析結果を示したものである。なお、静水状態における斜面と静水面との交点を原点として示しており、水深は10cmである。Fig.5は、粒子群が水面から水中へと突入した直後の固液混相流の解析結果を示したもので、水面の極近傍および粒子群の近傍においても速度ベクトルが計測できていることがわかる。粒子群の背後と静水面で囲まれた領域では、水中に突入していく粒子群があるにもかかわらず斜面に沿って上昇しようとする流体運動が計測されるとともに、先端粒子群の背後に回り込むような流体運動も同時に計測されており、斜面上を運動する粒子群の分裂過程が顕著に見て取ることができる。

Fig.6は、斜面中央および水底近傍における固液混相流の計測結果を示したものである。粒子群の後端では流体を沖側へと押し出すような流れが見られる。また、その背後には大きな流速帯が形成され、後続の第二粒子群の存在が明瞭に見られる。粒子群の影響を受けた流れとともに、水面近づく際には明らかに波動運動に起因すると考えられる運動も見られる。第二粒子群の背後からは、薄い層状を呈してさらなるガラスビーズが斜面上を水底方向へ運動しているが、その直上では非常に薄い層で比較的流体の運動速度が早い領域が存在することがわかる。

Fig.7は、斜面法廃から水平な水底にかけての領域を示したものので、斜面上を運動した粒子群は、大凡、この撮影領域内で停止している。同図(a)および(b)では、先端粒子群の背後に大規模な波構造が計測されているが、粒子群が停止し始めた同図(c)および(d)では、その大規模な波よりも先端域に小規模な波が形成し始めることがわかる。すなわち、粒子群が運動している間は粒子群の運動が流体運動を誘起しているが、粒子群が水底で停止した後は、粒子群が流体運動の減衰要因あるいは境界条件として流体運動に影響を及ぼすことがわかる。また、同図(e)および(f)からは、両波が干渉しながら、沖側に進行・上昇しながら減衰していく様子がわかる。

以上のように、本研究で提案する流動線連結法(PLCV法)は、高濃度固液混相流における流体運動を、高時間・高空間解像度で計測できる手法であることがわかる。

4. 結 言

本研究では、従来のアルゴリズムでは、計測が
困難であった高速混相流場の画像計測手法として、新たに流跡線連結法を開発した。流跡線連結法は、タイムラグのない連続流跡線画像を撮影することによって、これまで複雑であった流跡線の流向を容易に決定することができる手法である。本研究で開発した流跡線連結法を、現象の早い固液混相流場に適用した結果を示し、その高い有用性を示した。

交差したトレーサーの除去法、流向の誤判斷など、いくつかの課題を有するものの、本手法は固液混層乱流場の計測に有用な手法であると結論づけることができる。上記の課題を克服するとともに、本手法による三次元計測にも取り組む予定である。

Fig. 6 Measured velocity vectors over a slope.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>1.376</td>
</tr>
<tr>
<td>(b)</td>
<td>1.456</td>
</tr>
<tr>
<td>(c)</td>
<td>1.536</td>
</tr>
<tr>
<td>(d)</td>
<td>1.616</td>
</tr>
<tr>
<td>(e)</td>
<td>1.696</td>
</tr>
<tr>
<td>(f)</td>
<td>1.776</td>
</tr>
</tbody>
</table>

困難であった高速混相流場の画像計測手法として、新たに流跡線連結法を開発した。流跡線連結法は、タイムラグのない連続流跡線画像を撮影することによって、これまで複雑であった流跡線の流向を容易に決定することができる手法である。本研究で開発した流跡線連結法を、現象の早い固液混相流場に適用した結果を示し、その高い有用性を示した。

交差したトレーサーの除去法、流向の誤判斷など、いくつかの課題を有するものの、本手法は固液混層乱流場の計測に有用な手法であると結論づけることができる。上記の課題を克服するとともに、本手法による三次元計測にも取り組む予定である。

Nomenclature

- P_{th} : probability of path lines over criteria of threshold among all path lines [-]
- PL : vector of path line [-]
- \dot{u} : velocity change [m/s/frame]
- \dot{u}_t : threshold of velocity change [m/s/frame]
- V : volume of particles [m³/m³]

Greek letters

- θ : angle change [deg./s/frame]
- $\dot{\theta}_t$: threshold of angle change [deg./s/frame]
- Ω : interrogation region [-]

参考文献

Fig. 7 Measured velocity vectors near slope end.