A New Washing Method Using Microbubbles

HIMURO Shozo

Abstract The effect of microbubble washing was examined for removing oil from the "nori" net. The quantity of oil in the "nori" net after the washing experiments had considerably decreased. 83% or more of oil in the "nori" net was reduced at 25°C. To clarify the washing mechanism of microbubbles, surface tension measurement has been carried out on aqueous solution exposed to microbubbles. The surface tension of aqueous solution decreases with the treated time of microbubbles. These phenomena are attributed to behavior of microbubbles in solution. It was found that shrinking phenomenon of microbubbles greatly decreases the hydrogen bonding causing decreased surface tension. Microbubbles contributed to weakening the hydrogen bonding. When the detergent molecules were introduced into water, the replacement of the water molecules by the detergent molecules results in a decrease in the surface tension of water. However, the detergent solution exposed to microbubbles greatly increases the hydrogen bonding causing increased surface tension. It was also examined that degradation of 4-ethylphenol had occurred.

Keywords: Washing, Microbubble, Surface Tension, Detergent, Hydrogen bonding

1. 緒 言

地球環境問題が叫ばれているが、企業活動をする上で洗浄をはじめとする環境問題は避けて通れない。一方、生活排水に起因する水質汚濁に対する生活排水対策は緊急を要する。因みに洗濯用洗剤は家庭洗剤の約60%を占め、その年間生産量は164万トンと直接自然環境に排出される化学物質としては桁違いに重大な環境汚染化学物質といわれている[1]。1995年末にオゾン層保護法によって特種フロンなどの生産・使用が全廃となっているが、その代替洗浄剤や代替洗浄技術の開発が活発に行われている。洗剤を使用しない洗浄技術には、超音波洗浄技術、光洗浄技術、高圧ウオータージェット洗浄技術、超振動洗浄技術、ウェットブラスト洗浄技術などが開発され、用途に応じて使用されている。ここでは、マイクロバブルを用いた新しい洗浄技術について論じるが、これまでにマイクロバブルの発生方法についてはいくつか報告されている。せん断による方法[2]、加圧溶解法[3]、衝撃波法[4]、超音波法[5]などの発生方法があるが、本報告では、せん断による方法を用いたマイクロバブル発生装置の洗浄技術について述べる。

具体的な洗浄として、（財）洗浄科学協会の湿式人工汚染布およびノリ網を用いて洗浄試験を行った。ノリ網を使用した理由は、ノリ養殖の収穫を増加させる目的にあり、ノリ養殖工程の中でノリの胞子をノリ網にいかに吸着させるかが、収穫に大きく影響する。一般に、ノリ網の製造工場で効率的にノリ網を製造するために油が使用されている。このノリ網に吸着した油が、ノリの胞子の吸着を阻害している。したがって、油が吸着したノリ網は洗浄を必要とするのであるが、現

* 2006.11.16 受付

** 有明工業高等専門学校物質工学科 〒836-8585 福岡県大牟田市東萩尾町150
TEL: (0944)53-8746 FAX: (0944)53-8869 E-mail: himuro@ariake-net.ac.jp
2. 実験装置および実験方法

2.1 マイクロバブル発生装置

本研究では、水中における微細気泡は不思議な現象を引き起こすことが知られていて、ここではマイクロバブル発生装置の物理化学的性質についても明らかにし、マイクロバブルによる洗浄のメカニズムについて考察する。

Fig.1 Distribution of diameters for the microbubbles.

体の圧力を利用して微細気泡を生成することを特徴とするマイクロバブル発生装置である[7]。

H3型発生装置は空気を吸収するタイプで、コンプレッサを用いずポンプのみでマイクロバブルを発生させることができる。Fig.1にマイクロバブルの大きさの分布図を示すが、H3型発生装置から発生するマイクロバブルの直径は、ほぼ28μm以下であり、かなり小さなマイクロバブルを発生させることができる。このマイクロバブルの大きさについては、Dyna Flow社によって開発された音響式気泡分極分布計測装置(ABS)を用いて測定した。ただし、このABSによる測定では、直径12μm以下のマイクロバブルの大きさを測定できない。

2.2 マイクロバブルによる洗浄

洗浄には、(財)洗浄科学協会の湿式人工汚染物を用いた。洗浄方法は、汚染物を洗剤で約10分間洗浄した後、さらに10分間すすぎを行うという方法を用いた。洗浄によって污汚が落ちたかどうかの判定には、(株)日本電気工業の白色度計NW-1型を用い、汚染物の白色度の測定を行うことで判定した。

さらに、マイクロバブルによるノリ網への洗浄実験を次のように行った。ビーカーに2dm³の水槽水を入れ恒温槽で25℃に設定した後に、10gのノリ網を投入し、H3型エアレーターを用いてパブリング時間30秒、10分、60分としてパブリングした。また、温度を45℃と60℃に設定し、同様にマイクロバブルで洗浄した。パブリング処理したノリ網を恒温乾燥器にて1時間、110℃で乾燥させ、重量差が1mg以内になった質量
を乾燥後のノリ網の質量とした。十分に乾燥させたノリ網に含まれる油分をソックスレー抽出器により抽出させ、ノリ網の残存油分量を決定した。

2.3 表面張力と蛍光強度の測定
温度を25℃に調節した恒温水槽に27dm³の水道水を満たし、マイクロバブルで一定時間処理した。処理した水道水について表面張力を測定した。表面張力は液滴法の一種である滴重法を用いた。

蛍光スペクトル測定には、日立製作所（株）のF4500型を用いた。蛍光スペクトルは、石英ガラスセルを用い、スリット幅は励起光、発光ともに5nm、スキャンスピード240nm/minで室温にて測定した。4-エチルフェノール水溶液は276nmの光で励起し、306nmの蛍光強度を観測した。

3. 結果と考察
3.1 マイクロバブルを利用した洗浄
Fig.2 に湿式人工汚染布に対するマイクロバブル洗浄結果を示すが、ここには乾燥後の白さから洗浄前の白さの差を白さの変化量として示した。洗浄量50mg/dlが通常洗浄するとき用いる濃度である。湿式人工汚染布に対するマイクロバブル洗浄では、洗剤濃度が12.5mg/dlで通常の洗浄より白くなり、臨界ミセル濃度の1/4程度で洗浄できることがわかった。また、通常の洗浄にマイクロバブルを入れると通常の洗浄の2倍以上の白さを示し、マイクロバブルの機能性が認められた。

さらに、一般的な身の回りにある汚れとしてカレーオイルに含まれる油分をソックスレー抽出器により抽出させ、ノリ網の残存油分量を決定した。マイクロバブルを用いない通常の洗浄では、洗剤量が1/4で洗剤なしの約半分の油分を除くことができた。これは、洗浄することで、カレーオイルの油分が減少することを示している。通常の1/4の洗剤量で著しく洗浄できていることがわかった。これは、洗浄とマイクロバブルとの相乗効果によるものと思われる。

このマイクロバブルの洗浄効果は、直接汚染布へ作用する効果とマイクロバブルが水の構造を変化させることによる表面張力の低下などの間接効果が含まれていると考えられる。

Fig.3 にノリ網を図中に示した各バブルリング条件で洗浄し、それぞれのノリ網の残存油分量を示した。従来法と比較すると、マイクロバブルで処理すると10%程度の残存油分量が少なくなった。また、バブルリング時間が長くなるにつれてノリ網の残存油分量は減少していることがわかり、このことから明らかにマイクロバブルに洗浄作用があることを示している。30μm程度のノリ網の残存油分量は減少するのに数分間を要することがわかった。したがって、マイクロバブルの消泡が洗浄効果と関係しているのではないかと思われる。また、バブルリング時間が長くなるにつれて、ノリ網に接触するマイクロバブルの量が増え、油分は消泡されると考えた。

さらに、温度を60℃に設定し、マイクロバブル
ル洗浄の温度依存性について検討した。ノリ網に吸着している油分の除去率は45℃・10分の従来法では68%、45℃・10分のマイクロバブル洗浄では78%となったが、60℃・10分のマイクロバブル洗浄では87%まで高めることができた。

しかしながら、一般的には高い温度で洗浄するより室温で洗浄したいものである。そこで、25℃でマイクロバブル洗浄を試みた結果、60分で84%まで除去できた。この系では、短時間で除去率を高めるための工夫が必要である。

3. 2 マイクロバブル洗浄のメカニズム

3. 2. 1 マイクロバブルの機械的洗浄効果

一般に洗浄のメカニズムは次のように考えられている。洗削粒子が、汚れた物質の表面に浸透し、その汚れた周辺を洗削粒子がくるみ、表面から剥離しやすいように浮き上がらせる。さらに、外部から力を加えることで汚れは物質表面から剥離され、洗浄される。ただし、洗削を使用する洗浄の場合、洗削粒子と汚れで形成されるコロイド粒子を分離するため、リンスが必要となる。

さて、マイクロバブルの洗浄のメカニズムについてであるが、これについてはまだきちんと解明していなかった。マイクロバブルは水中で収縮し、つぶれる瞬間に衝撃波が発生するが、おそらくそれが汚れを洗浄物質から剝離させるか、汚れを直接破壊して液中に分散させ、洗浄に寄与すると思われる。

水中におけるマイクロバブルの収縮過程を顕微鏡で写真撮影することに成功した。水中で動き回っているマイクロバブルの挙動を観察するのには至難の業である。そこで、顕微鏡でマイクロバブルを観察するために、小さいセルの中にいくつかのマイクロバブルを封じ込んだ。

Fig.4 にマイクロバブルの撮影結果を示すが、図中0秒で直径37μmのマイクロバブルは顕微鏡で観察した結果、350秒で目視できなくなるくらい小さくなった。

水中に発生したマイクロバブルは水面まで上昇して消失すると思われたが、このようにこの程度の大きさのマイクロバブルは、水中でだんだん小さくなり消失することが判明した。

3. 2. 2 マイクロバブルによる有機化合物の分解

汚れの主成分は、生物より発生する油脂類などが付着堆積した有機化合物が多い。もし、マイクロバブルでこれら有機化合物を破壊できるとすると有機化合物を形成している原生質の結合あるいは洗浄物質表面原素と汚れた有機化合物の原生質の結合を切断する大きなエネルギーをマイクロバブルがもっていることになる。参考までに Table 1 に各原生質の結合エネルギー [8] を示すが、マイクロバブルがこれらの原生質の結合エネルギーを切断できるかどうかを明らかにするために、2.6×10^5mol/1 の4-エチルフェノール水溶液 1dm^3をマイクロバブルでバブルし、その水溶液の蛍光強度を測定した。その結果を Fig.5 に示す。この水溶液の蛍光強度がバブル時間がともに減少し、バブルによる消光作用を示した。このとき極大の蛍光強度を示す波長のシフトは顕著であった。蛍光スペクトルのシフトが見られなかったことは、マイクロバブルが原生質の結合を切断していないことを示すものである。

4-エチルフェノールの濃度が希薄で、マイクロバブルとの接触がなかったわけではないが、マイクロバブルでバブルすることにより消光作用を示したことは、4-エチルフェノール分子が励起された状態から基底状態に戻るエネルギーの放出の仕方が、マイクロバブルを発生させたことに由来して異なっていることを示すものである。これらは、マイクロバブルが水中で消減するときに生じる活性化された分子が、4-エチルフェノールと反応していることを示すものである。しかしながら、原生質の結合を切断できるだけの大きなエネルギーをマイクロバブルはもっていないといえる。

3. 2. 3 マイクロバブルによる水の表面張力

水の表面張力は、水銀などの液体金銅を除けば、多くの液体に比べて異常に大きい。この現象は、

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Bond enthalpies for chemical bonds, in kJ/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-C</td>
<td>348</td>
</tr>
<tr>
<td>C-H</td>
<td>413</td>
</tr>
<tr>
<td>C-O</td>
<td>351</td>
</tr>
<tr>
<td>C-Cl</td>
<td>328</td>
</tr>
<tr>
<td>C-N</td>
<td>292</td>
</tr>
<tr>
<td>C-F</td>
<td>441</td>
</tr>
</tbody>
</table>

Progress in Multiphase Flow Research 2 (2007)
Fig. 4 Shrinking behavior of a microbubble.
分子間引力に基づいている。水の場合、分子量は小さいが、分子同士の水素結合により、表面分子の内部への力が大きくなり表面張力は大きくなっている。Fig.6 にバブリングした時間に対する水道水の表面張力をプロットした。水道水をバブリングすることで表面張力は低下現象を示し、温度を数度上げた状態に水の性質を示した。この表面張力の減少から考えられるのは、水分子のクラスターが小さくなったことである。小さいクラスターは大きなクラスターに比べ相互作用している水分子の数が少ないの、より少ないエネルギーで表面積を広げることができる。これが明るかにバブリングで水の水素結合が切られ、表面張力が小さくなったことを示すものである。マイクロバブルによる水の表面張力低下で、水分子が繊維の中へ浸透しやすくなり、洗浄効果を高めたといえる。

3.2.4 洗剤水溶液へのマイクロバブルの効果

Fig.7 は市販の洗剤を含む水溶液をマイクロバブルで処理し、一定時間ごとに採取した溶液の表面張力測定した結果である。マイクロバブル処理前の洗剤溶液の表面張力は、濃度に依存して低下が大きくなっている。これは、洗剤に含まれる界面活性剤の作用である。一方、マイクロバブル処理後の洗剤溶液における表面張力は上昇していることがわかる。

一般に、水の分子量は小さいが、水分子間に水素結合が生じるため、表面張力は大きい。そのため、洗浄の際に洗剤を加えることで、洗剤に含まれる界面活性剤の作用により、水分子間の水素結合を弱める。このことが、洗剤溶液の表面張力を低下させる。この表面張力の低下により、洗剤溶液が布のか束の中にしみ込みやすくなる。したがって、繊維に付着していた汚れは、洗剤分子との親和性により、洗剤溶液中に浮き上がることで除去されている。これまでにマイクロバブルを処理した蒸留水の表面張力は、マイクロバブルによって水分子の水素結合が切られ、表面張力は低下するという結果が得られている [9]。洗剤を含んだ水溶液にマイクロバブルを併用したとき、マイクロバブルの洗浄効果は、直接汚染布へ作用する効果とマイクロバブルが水の構造を変化させたこと
による表面張力の低下などの間接効果が含まれていると考えていた。

しかし、本研究によりマイクロパブルで処理すると、市販の洗剤規定量の1/4の量以下のすべての濃度で表面張力は上昇するという結果が得られた。これは、マイクロパブルの洗浄効果は表面張力の低下だけによるものではなかったということを示している。しかし洗剤を加えるだけで洗浄効果が高くなった理由は、洗剤に多く含まれる界面活性剤がマイクロパブルと作用し、界面活性能を低下させているのではないかと考えた。

4. 結言

マイクロパブルに洗浄効果があることを見出したが、その効果には直接作用と間接作用があると思われる。直接作用としては、マイクロパブルは水中で収縮し、消減するときに衝撃波が発生するようであるが、おそらくそれが汚れを洗浄物質から剥離させるか、汚れを直接破壊して水中に分散させ、洗浄する作用である。一方、間接作用は、マイクロパブルが水分子間に形成している水素結合を切断することで表面張力を低下させ、水を対象物に浸透しやすくなることで洗浄する作用である。

特に、今回明らかにることができたことは、マイクロパブルが急激に収縮するとときに原子間の結合エネルギーを切断するほどのエネルギーをもっていないが、活性化された分子が発生しているということである。このことは、マイクロパブルの機能を示すもので、さまざまな用途に期待できると考えている。おそらく、この機能性が洗剤との相乗効果をもたらしたもので、極めて少ない洗剤量で洗浄を可能とすることがわかった。

一方、マイクロパブルによるノリ網の洗浄効果を明らかにすることができた。マイクロパブルがノリ網に吸着している油分に接触し、作用していても思われるが、この作用において、油分をノリ網から剥離するためにはエネルギーが必要となる。おそらくマイクロパブルが消滅する際にエネルギーを発し、このエネルギーが油分をノリ網から剥離させていると思われる。このマイクロパブルの剥離作用がマイクロパブルの洗浄効果の大きな要因となっているが、洗浄効果を高めるためにはパブリシング時間を長くすることやパブリシング温度を高くすることなどが考えられる。

さらに、25℃一定の洗剤溶液をマイクロパブル処理することで表面張力が上昇することがわかった。これは、親水基と疎水基を持つ溶液において、マイクロパブル処理することにより、マイクロパブルと疎水基が作用することによって、界面活性剤を含む水溶液の表面張力が上昇すると考えた。

参考文献