PHOSPHORUS-CONTAINING DENDRIMERS

JEAN-PIERRE MAJORAL, ANNE-MARIE CAMINADE, REGIS LAURENT

Laboratoire de Chimie de Coordination du CNRS
205 route de Narbonne, 31077 Toulouse cedex 04 - France

Abstract: Synthesis of dendrimers incorporating phosphorus groups at each generation are reported. The presence of these phosphorus fragments allows to develop a rich and versatile chemistry on the surface and within the cascade structure. Some applications are also described.

Dendrimers are three-dimensional, highly ordered polymers formed by reiterative reaction sequences starting from smaller molecules. There is a few phosphorus-containing dendrimers\(^1\) and the first neutral species of this type possessing either P–N and P–O bonds\(^2\), or P–C bonds\(^3\) were described in 1994.

SYNTHESIS

In a pioneering work we reported the synthesis of phosphorus-containing dendrimers, first up to the fourth generation\(^2\) then up to generation 12, the highest generation described in dendrimer chemistry\(^4\) (scheme 1).

Another very efficient way of construction of dendrimers should be emphasized. It is outlined in scheme 2. Dendrimers 3–G\(_1\)–3–G\(_4\) and 3–G'\(_1\)–3–G'\(_4\) can be prepared in high yield. They possess a number of P=N–P=S groups, and the O–C\(_6\)H\(_4\)CH=N–N(CH\(_3\))P=S fragment functions as the linker between each generation in all these new macromolecules (scheme 2).

REACTIVITY

Reactivity within the cascade structure of these new phosphorus-containing dendrimers will be presented\(^5\).
Scheme 1

\[
S=\text{POCl}_3 + 3 \text{NaO-} \text{C}=\text{N-CHO} \rightarrow S=\text{PO(O-} \text{C}=\text{N-CHO})_3 - 3 \text{NaCl} \quad 1-\text{G}_0
\]

\[
S=\text{PO(O-} \text{C}=\text{N-CHO})_3 + 3 \text{H}_2\text{N-N(Me)P(S)Cl}_2 \rightarrow S=\text{PO(O-} \text{C}^=\text{N-CHO})_3 - 3 \text{H}_2\text{O} \quad 1-\text{G}_1
\]

\[
\text{Dendri}(\text{S-POCl})_{y} + 3(2^y) \text{NaO-} \text{C}=\text{N-CHO} \rightarrow \text{Dendri}(\text{S-PO(O-} \text{C}=\text{N-CHO})_{y}) \quad 1-\text{G}_n
\]

\[
\text{Dendri}(\text{S-PO(O-} \text{C}=\text{N-CHO})_{y} + 3(2^y) \text{H}_2\text{N-N(Me)P(S)Cl}_2 \rightarrow \text{Dendri}(\text{S-POCl})_{y} \quad 1-\text{G}_{n+1}
\]

\[
\text{Generation } n \quad 3(2^n) \text{Cl}
\]

\[
\text{Generation } n \quad 3(2^n) \text{CHO}
\]

\[
\text{Generation } n+1 \quad 3(2^{n+1}) \text{Cl}
\]

\[
\text{Generation } 12
\]

1-G_{12}

Phosphorus Research Bulletin Vol. 10 (1999), 680
Up to 322 charges can be chemoselectively incorporated in the skeleton through the selective alkylation of the thiophosphoryl groups of the \(\text{Ph}_2\text{P} = \text{N} - \text{P} = \text{S} \) units. The remaining macromolecules remain fairly soluble in different solvents.

Regioselective gold complexation into the internal layers of dendritic and polydendritic macromolecules takes place not only on \(\text{P} = \text{N} - \text{P} = \text{S} \) groups but also on \(\text{P} = \text{N} - \text{P} = \text{N} - \text{P} = \text{S} \) fragments as well as on more classical \(\text{CH}_2\text{PPh}_2 \) moieties which can be incorporated within the cascade structure.

The first example of the formation of multidendritic macromolecules can be proposed through the regioselective stepwise growth of six dendrimer units into the internal voids of a main dendrimer (fig.1).

Internal \(\text{P} = \text{N} - \text{P} < \) groups can be easily generated through cleavage of the phosphorus sulfur bond of the internal \(\text{Ph}_2\text{P}^+ = \text{N} - \text{P}(\text{SR}) < \) linkages. The resulting aminophosphite groups reacted with a variety of reagents, for example functionalized azides, allowing the formation of neutral dendrimers possessing functional groups such as amines, isothiocyanates... chemoselectively grafted within the cascade structure.

Aldehyde groups incorporated into the internal voids of dendrimers remain reactive. Indeed treatment of a dendrimer possessing 12 internal aldehyde groups with for example 4'-aminobenzo-15-crown-5 (12 equiv.) leads to the corresponding dendrimer bearing 12 crown ether units within the cascade structure (fig.2).

Applications of some of these dendrimers in different fields will be underlined.

REFERENCES
