Cu-P-Y-O BASED CERAMIC HUMIDITY SENSOR : SOLID-STATE REACTION BETWEEN Cu$_3$(PO$_4$)$_2$·3H$_2$O AND Y$_2$O$_3$

AKIO TADA, NORIYASU OKAZAKI, MASAKI KAWAI, and HIDENOBU ITOH†
Department of Applied and Environmental Chemistry, Kitami Institute of Technology, Kitami 090
†Department of Materials Science, Kitami Institute of Technology, Kitami 090

Abstract The solid-state reaction routes to humidity-sensitive Cu-P-Y-O based substances, particularly to YPO$_4$ from Cu$_3$(PO$_4$)$_2$·3H$_2$O and Y$_2$O$_3$ was investigated by XRD, TG-DTA, and SEM. In addition, the sintering temperature of the Cu-P-Y-O based ceramics was correlated with the humidity-sensitive characteristics, and the presence of Cu$_2$O in the excellent Cu-P-Y-O based humidity sensor was also confirmed.

INTRODUCTION

Very recently, we have reported that a Cu-P-Y-O based ceramics (designated as CPY), which was produced by the solid-state reaction between Cu$_3$(PO$_4$)$_2$·3H$_2$O and Y$_2$O$_3$, showed a good humidity-sensitive characteristics; its electric resistance decreased by three orders in magnitude as the surrounding relative humidity increased from 0% to 96%. It has been also found that a typical CPY sample is composed of several crystalline phases such as YPO$_4$, Cu$_2$Y$_2$O$_5$, CuO, and unreacted Y$_2$O$_3$. Among them, YPO$_4$ has been turned out to be a key substance to which the humidity-sensing potential of the CPY element is owing. The solid-state reaction mechanism for producing YPO$_4$, however, has not been revealed. In addition, Cu$_2$O has been presumed to contribute to the humidity-sensitivity of excellent CPY elements in the extremely low humidity range, but the presence of Cu$_2$O has never been confirmed so far. Therefore, those subjects were dealt with in the present paper.

EXPERIMENTAL

Received November 16, 1993; Accepted December 20, 1993
Several Cu-P-Y-O elements listed in Table 1 were prepared as follows. A calculated amount of Cu$_3$(PO$_4$)$_2$·3H$_2$O and Y$_2$O$_3$ was mixed and ground, followed by calcining at an elevated temperature for 5 h in air. The resulting substance was pulverized, pressed at 10000 kg·cm$^{-2}$ into a disk with both 13 mm in diameter and 0.90 mm in thickness and finally sintered at various temperatures for 3 h in air. A BF-type element shown in Fig.1 was made by applying a silver paste onto both faces of a CPY disk and by heating it at 700 °C for 10 min. The electric resistance of a sensor element, which was exposed to a water vapor equilibrated with a saturated salt solution at 25 °C, was measured by so-called four-point resistance measurement method by using a LCR meter (YHP4261A) under the applied voltage of 1 V ac (1 kHz). The TG-DTA analysis of a sample (10 mg) was made with a ULVAC TGD-7000 in the temperature range from 25 °C to 1200 °C. The X-ray diffraction analysis was performed with a Rigaku Rint-1200 (target: CuKα).

RESULTS AND DISCUSSION

Figure 2 shows the results of X-ray analysis of CPY-10 samples heated at 130 °C - 790 °C. After heating at 130 °C, strong diffraction peaks due to unreacted Y$_2$O$_3$ and very weak peaks due to Cu$_3$(PO$_4$)$_2$·3H$_2$O and Cu$_3$(PO$_4$)$_2$ were observed. On heating at 300 °C, the peaks of Cu$_3$(PO$_4$)$_2$·3H$_2$O diminished but those of Cu$_3$(PO$_4$)$_2$ did not change up to 500 °C. When heated at 500 °C, the peaks of Cu$_3$(PO$_4$)$_2$ disappeared and new peaks assigned to Cu(PO$_3$)$_2$ appeared. The latter peaks grew steadily up to 730 °C. At 730 °C Cu(PO$_3$)$_2$ vanished and both Cu$_5$O$_2$(PO$_4$)$_2$ and YPO$_4$ began to form. Cu$_5$O$_2$(PO$_4$)$_2$ disappeared and CuO appeared newly at 790 °C. YPO$_4$ kept on increasing in compensation for decreasing Y$_2$O$_3$ during the temperature was raised up to 950 °C. At 950 °C Y$_2$O$_3$ diminished.
FIGURE 2 The X-ray diffraction patterns of CPY-10 sintered at various temperatures: Δ; Cu₃(PO₄)₂, ○; Y₂O₃, ×; Cu(PO₃)₂, ◊; Cu₅O₂(PO₄)₂, ●; YPO₄, ◇; Cu₂Y₂O₅, □; CuO.
completely, the increase of YPO₄ stopped, and new substance Cu₂Y₂O₅ appeared. At 1050 °C CuO began to change into Cu₂O. Judging from those results, we propose the following scheme.

\[
\begin{align*}
\text{Cu₃(PO₄)₂·3H₂O} & \rightarrow \text{Cu₃(PO₄)₂} \rightarrow \text{Cu(PO₃)₂} + 2\text{CuO} \\
2\text{Cu(PO₃)₂} + 3\text{CuO} + \text{Y₂O₃} & \xrightarrow{600 \sim 730 ^\circ C} \text{Cu₅O₂(PO₄)₂} + 2\text{YPO₄} \\
\text{Cu₅O₂(PO₄)₂} + \text{Y₂O₃} & \xrightarrow{730 \sim 790 ^\circ C} 5\text{CuO} + 2\text{YPO₄} \\
2\text{CuO} + \text{Y₂O₃} & \xrightarrow{950 ^\circ C} \text{Cu₂Y₂O₅}, 4\text{CuO} \xrightarrow{950 ^\circ C} 2\text{Cu₂O} + \text{O₂}
\end{align*}
\]

SCHEME Reaction routes to YPO₄, Cu₂O, etc.

Figure 3 demonstrates the effect of the sintering temperature of a CPY-10 sample on the humidity-sensitive characteristics. When sintered at 850-1040 °C, the characteristics of a CPY-10 sample was similar to one another. Although the resistivity of a CPY-10 sample sintered at 700 °C or 750 °C was considerably higher than that of a CPY-10 sample sintered at 850-1040 °C, the humidity dependence of resistivity for the former sample was similar to that for the latter sample in the whole humidity range. On the other hand, the CPY-10 sample sintered at 1050 °C lost its humidity-sensitivity, and its resistivity was quite similar to that of Cu₂O, indicating the occurrence of abrupt physical and chemical change to yield Cu₂O.

Figure 4 shows the TG-DTA for a CPY-10 sample. The decrease in weight took place gradually up to 500 °C and became remarkable suddenly around 1050 °C. The latter weight loss seems to be related with the endothermic peak at 1050 °C. As described above, CuO was transformed to Cu₂O at 1050 °C. This reaction successfully explains
the TG-DTA behavior at 1050 °C. The exothermic peak at 790 °C, however, can not be explained at the present stage.

Judging from the reaction paths for producing YPO$_4$ and others, a CPY-5 sample sintered at 950 °C is supposed to contain not only YPO$_4$ and Cu$_2$Y$_2$O$_5$ but considerable amount of unreacted Y$_2$O$_3$, and moreover, a CPY-15 sample sintered at 950 °C is supposed to be composed of YPO$_4$ as well as of a Cu-P-O based composite substance which would be produced from excess Cu$_3$(PO$_4$)$_2$·3H$_2$O in the starting materials. The XRD data shown in Fig.5 gives support to all of the above predictions. The reason Fig.5 gives no information about the Cu-P-O based substance is because such a substance will be amorphous.

Judging from the reaction paths for producing YPO$_4$ and others, a CPY-5 sample sintered at 950 °C is supposed to contain not only YPO$_4$ and Cu$_2$Y$_2$O$_5$ but considerable amount of unreacted Y$_2$O$_3$, and moreover, a CPY-15 sample sintered at 950 °C is supposed to be composed of YPO$_4$ as well as of a Cu-P-O based composite substance which would be produced from excess Cu$_3$(PO$_4$)$_2$·3H$_2$O in the starting materials. The XRD data shown in Fig.5 gives support to all of the above predictions. The reason Fig.5 gives no information about the Cu-P-O based substance is because such a substance will be amorphous.

![FIGURE 4 TG and DTA curves of CPY-10 sample. Heating rate: 20 °C/min, atmosphere; air.](image)

![FIGURE 5 The X-ray diffraction patterns of CPY-5 (a) and CPY-15 (b) sintered at 950°C: O : Y$_2$O$_3$, ● : YPO$_4$, ◇ : Cu$_2$Y$_2$O$_5$, □ : CuO.](image)
Figure 6 shows the scanning electron micrographs of several CPY samples. The CPY-5 sample appears to be composed of mainly large particles, whereas the CPY-10 sample looks like an ensemble of nearly homogeneous small particles and moreover, seems to have something like pores. On the other hand, in the CPY-13 sample, grains get still larger and fine particles disappear. In the case of the CPY-15 sample, it appears that the growth of the grains (black parts in the photograph) reaches a spatial limit and so a glassy substance (white parts in the photograph) is pushed out of the grain-boundaries. This glassy substance is thought to be identical to the amorphous Cu-P-O substance described above.

In conclusion, YPO$_4$ has been found to start to form around 730 °C from Y$_2$O$_3$ and at least Cu(PO$_3$)$_2$. In addition, the presence of Cu$_2$O in a CPY-10 sample sintered at 950 °C has been confirmed.

REFERENCES