観測結果に基づく 2006 年および 2007 年千島列島沖の地震津波の特性

Characteristic of the Observed Tsunami Profiles of the 2006 and 2007 Chishima-Islands-off Earthquakes

永井紀彦 1・清水勝義 2・佐々木誠 3・李在炯 4・久高将信 5・額田恭史 6
Toshihiko NAGAI,Katsuyoshi SIMIZU,Makoto SASAKI
Jae Hyeng LEE, Masanobu KUDAKA and Kyoshi NUKADA

The 2006 Chishima-Islands-off Earthquake was generated around 20:14 on November 15 in 2006 in Japanese standard time (JST). It was reported by the Japan Meteorological Agency (JMA) that the magnitude of the earthquake was 7.9, and the hypocenter was at off-Chishima-Islands Pacific side coast, with the latitude of N46.7°, the longitude of E154° and 30km deep under the seabed. Two months after the earthquake, 2007 Chishima-Islands-off Earthquake was generated around 13:23 on January 13 in 2007 (JST) with the magnitude of the earthquake 8.2 and the hypocenter of the latitude of N46.3°, the longitude of E154° and 10km deep. This paper introduces the observed tsunami profiles by the Nationwide Ocean Wave Information network for Ports and Harbours (NOWPHAS).

1. はじめに


2. 地震津波の概要と気象海象条件

2006 年千島列島沖の地震は、日本時間 2006 年 11 月 15 日 20:14 に発生し東京大学地震研究所（2006）、気象庁は、11 月 15 日の 22:00 に本地震に関する報道発表資料を公表し、翌 16 日 12:00 に資料の更新を再度発表し、きめ細かな地震津波情報をとりまとめている。また、米国気象海洋局 (NOAA) の太平洋津波警戒センター (http://www.prh.noaa.gov) からも、本地震および津波観測結果が紹介されており、津波は、ハワイ諸島、アルスカを含む北米・中米・南米の太平洋沿岸で観測されたことが紹介されている。11 月 16 日発表の気象庁の情報によれば、地震の揺れから算定されたマグニチュードは 7.9、震源は千島列島の太平洋側沖合の北緯 46.4 度、東経 154.1 度で、深さ 28.2 km とのことであった。

2 か月後の日本時間 2007 年 1 月 13 日 13:23 には、新たな地震が発生し東京大学地震研究所（2007）によると、地震の揺れから算定されたマグニチュードは 8.2、震源は千島列島の太平洋側沖合の北緯 46.288 度、東経 154.448 度で、深さ 10 km とのことであった。気象庁からのこの地震津波に関しての発表としては、1 月 13 日の 15:00 と 18:30 に、それぞれ第 1 報と第 2 報が発表されている。マグニチュードとしては第 1 報では速報値 8.3 が発表された後に、第 2 報で 8.2 に修正されている。NOAA の太平洋津波警戒センターの web-site では、この地震および津波観測結果として、津波は、2006 年 11 月の地震津波よりも低かったものの、やはりハワイ諸島、アルスカを含む北米・中米・南米の太平洋沿岸で観測されたことが紹介されている。

国際気象海洋局 (NOAA) の太平洋津波警戒センター (http://www.prh.noaa.gov) からも、本地震および津波観測結果が紹介されており、津波は、ハワイ諸島、アルスカを含む北米・中米・南米の太平洋沿岸で観測されたことが紹介されている。11 月 16 日発表の気象庁の情報によれば、地震の揺れから算定されたマグニチュードは 7.9、震源は千島列島の太平洋側沖合の北緯 46.4 度、東経 154.1 度で、深さ 28.2 km とのことであった。

2 か月後の日本時間 2007 年 1 月 13 日 13:23 には、新たな地震が発生し東京大学地震研究所（2007）によると、地震の揺れから算定されたマグニチュードは 8.2、震源は千島列島の太平洋側沖合の北緯 46.288 度、東経 154.448 度で、深さ 10 km とのことであった。気象庁からのこの地震津波に関しての発表としては、1 月 13 日の 15:00 と 18:30 に、それぞれ第 1 報と第 2 報が発表されている。マグニチュードとしては第 1 報では速報値 8.3 が発表された後に、第 2 報で 8.2 に修正されている。NOAA の太平洋津波警戒センターの web-site では、この地震および津波観測結果として、津波は、2006 年 11 月の地震津波よりも低かったものの、やはりハワイ諸島、アルスカを含む北米・中米・南米の太平洋沿岸で観測されたことが紹介されている。
の長い津波成分の抽出にあたっては、大きな不都合は生じなかった。

3. 津波波形の観測記録

（1）津波波形観測点の位置と震源

全国港湾海洋波浪情報網（ナウファス）によって港湾空港技術研究所に収集される沿岸の波浪・潮位観測記録（永井ら，2004b）から津波波形を抽出・整理した。

図-2 に，×印で震源位置を，●印で波浪（29点），○印で潮位（29点）の観測所位置を示す。括弧内の数字は波浪計設置水深（m）を意味する。ナウファス沖合波浪計は，海底計（橋本ら，1995）に代表される水深20-50 mに設置される超音波海底計式であり，海面の上下変動を広範な周期について直接計測するものである。多くの検潮所は，井戸内水位をフロートの上下運動として測定するフーズ型であるが，井戸の周波数応答特性の把握（岩崎ら，2006）は，今後の実測に待たなければならず，導水管による物理的ローパスフィルターを経た波形記録であることは注意を要する。ただし，轟多布と森検潮所では，空中発射型潮位計（永井ら，2001）が採用されている。

（2）津波波形の抽出と読み取り

図-3に，津波波形記録例を示す。周期の短い波浪等の影響の除去にあたっては，±60 sの単純移動平均にハニングウィンドウをかけたフィルター（50％通過周期が140 s）を用い，潮汐成分の除去は，気象庁の潮表解析で用いられているカットオフ周期209分の通過率が50％の数値ハイパスフィルターを採用した（岩崎，1996；永井ら，2006；清水ら，2006）。

津波到達時刻と第1波の水位の偏差（水位の天文潮位から）の差，最高偏差（水位の天文潮位からの差が最大の値）とその起時，ならびにゼロアップクロス法で定義した周期の範囲を求めた。到達時刻は，津波第1波の最大偏差発生前に，フィルターをかけて水位変動を推定して天文潮位を上方にクロスした時刻として定義した。

沖合および港内でともに第1波目から津波を識別することができた十勝・釜石・石巻・鹿島の4波では，沖合津波到達を初期時点として，30秒間隔で2048の17時間4分間のデータをサンプリングしたFFT方法による周波数スペクトル解析を実施し，それぞれの津波について，港内波形と沖合波形の比較検討を行った。

4. 津波波形記録のとりまとめ

（1）津波波形記録の整理結果

図-4は，十勝（大津漁港）沖波象計と十勝港検潮所における津波波形記録を示したものである。時間軸の起点は，それぞれの地震発生時刻とし，図-2で紹介したフィルターをかけて水面変動を示した。2007年津波は，2006年に比較して地震マグニチュードは大きかったが津波高さは低く，地震規模だけから津波を予測することはできないことが改めて示された。いずれの津波も半日間以上の長時間にわたって継続した。来襲直後は1時間程度の比較的長い周期成分が支配的であったが，数時間後には周期数分程度の比較的短い周期成分が顕著
に現れ、遠地津波伝播の複雑な特性を示唆するものであった。

（2）波別解析結果

両津波は、遠地から来襲する津波であったため、伝播経路が複雑かつ多岐であったためと推定されるが、津波波形到達時刻を明確に特定することは、多くの観測点で困難であった。また、津波による海面の上下変動はほとんどどの観測点で非常に長い時間を経過し、翌日まで津波が継続した。図-5から図-8に、両津波の波高（両振幅）の経時変化を、地震発生時を起時として、沖合波浪計と港内検潮所において、棒グラフでとりまとめた。ここに棒グラフの幅は、個別波の周期を意味している。

表-1は、これらの結果をとりまとめたものである。表中の時刻は、それぞれの地震発生時刻を起点としている。

第1波の到達時刻に注目すると、両地津波は震源が近かったためであると推定されるが、各観測点とも、地震発生から津波第1波の到達までの時間が、プラスマイナス30分間程度の差はあるものの、両津波ではほぼ同じであり、十勝湾では1時間から1時間半程度、鹿島湾では2時間前後程度であった。津波第1波の周期は、観測点によって異なり20-60分程度であったが、特に2007年津波は波高が低かったため、常時の長周期水面変動と津波第1波を識別することが必ずしも容易ではなく、このため、観測記録上示された第1波到達時刻に、両津波の間で30分間程度の相違が見られたものと思われる。

沖合と港内の観測記録を比較すると、津波第1波の到達および最大偏差時刻は、沖合が港内より数分から数十分程度早くなっており、沖合波浪観測網の津波検知への有効性が改めて確認された。第1波の最大偏差発生時刻差は、港によって異なるが、例えば十勝では、2006年地震津波では9分間、2007年では15分間の時刻差であった。ただし、2007年津波は、第1波の偏差がほとんどの観測点で5cm以下と低かったため、時刻の読み取り結果にも若干の誤差が含まれていることには注意を要するので、表中には、偏差5cm以下の個別波は斜字で表示した。
表1 津波の観測諸元の比較

<table>
<thead>
<tr>
<th></th>
<th>2006年11月14日</th>
<th></th>
<th>2007年1月13日</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>到達 時刻</td>
<td>第1波</td>
<td></td>
</tr>
<tr>
<td></td>
<td>波差 (cm)</td>
<td>時刻</td>
<td>波差 (cm)</td>
</tr>
<tr>
<td>十勝</td>
<td>沖合 1:35</td>
<td>8.0</td>
<td>1:44</td>
</tr>
<tr>
<td></td>
<td>湖内 1:41</td>
<td>27.9</td>
<td>1:53</td>
</tr>
<tr>
<td>釜石</td>
<td>沖合 1:40</td>
<td>10.3</td>
<td>1:54</td>
</tr>
<tr>
<td></td>
<td>湖内 1:43</td>
<td>14.4</td>
<td>2:00</td>
</tr>
<tr>
<td>石巻</td>
<td>沖合 2:26</td>
<td>5.8</td>
<td>2:47</td>
</tr>
<tr>
<td></td>
<td>湖内 2:31</td>
<td>12.8</td>
<td>2:49</td>
</tr>
<tr>
<td>鹿島</td>
<td>沖合 2:16</td>
<td>8.5</td>
<td>2:24</td>
</tr>
<tr>
<td></td>
<td>湖内 2:26</td>
<td>8.6</td>
<td>2:40</td>
</tr>
</tbody>
</table>

これらの図表からは、港ごとに異なる沖合から港内にかけての津波の増幅状況や、各港湾に共通して津波は長期間継続し最大波の観測は数時間後となったことなども、読み取ることができる。

（3）スペクトル解析結果

図9と図10に、十勝港における津波波の沖合と港内のスペクトル解析結果を示す。十勝沖で津波波の到達を確認した時刻を起点とし、30秒間隔で1024の8時間32分間のデータをサンプリングし、周波数スペクトル解析を行った。上段の図は、沖合および港内の周波数スペクトルを重ね書きしたものであり、下段の図は、両者の比を応答関数として対数で示したものである。

図9と示される2006年津波の沖合のパワーは、0.0025Hz（周期約67分）に顕著なピークが見られ、マグニチュード8.2の巨大津波地震に伴う津波波源域は、広く波長の長い津波が来襲したことを示唆するものであった。港内では、これに加えて、0.0065Hz（周期約30分）から0.0088Hz（周期約21分）にかけても、沖合には見られないピークが確認されたが、これは十勝港周辺海底地形によって增幅された周期帯であると考えられる。

図9と図10を比較すると、両津波波のスペクトル形状は異なるが、周期約1時間のピークより高周波域では、沖合から港内への応答関数はほぼ一致している。

図11と図12は、釜石港における同じ整理結果を示したものである。応答関数の形状は、高周波で異なるものの、2つのスペクトル特性が異なる津波に対する応答関数の形状は、十勝港と同様にほぼ一致している。すなわち、沖合での津波から港内での津波を推定できることを示唆している。

5．結 語

本稿で紹介した2つの津波は、遠かに来襲する津波であったため、伝播経路が複雑かつ多岐であったためと推定されるが、津波波形到達時刻を明確に特定することは、多くの観測点で困難であった。津波による海面の
図-11 2006年津波波形の周波数スペクトルと港内/沖合の周波数応答（釜石港）

図-12 2007年津波波形の周波数スペクトルと港内/沖合の周波数応答（釜石港）

上下変動はほとんどどの観測点で非常に長時間継続した。津波の周期は、個別波毎に大きく異なり、1時間を越える個別波から数分間の個別波まで、きわめて多様であった。

謝辞：国土交通省港湾局関係機関では、ナウフス波波計や港内観測器による観測網の構築・運営を担当されてるにあたって、データの品質維持のため、常日頃から観測機器のメンテナンスに全力を払われている。このこと、および海象観測機器の全国統一基準に基づくメンテナンス実施を担当されている（社）海洋調査協会の関係の皆様に、改めて感謝したい。また、本報では、海上保安庁海洋情報部および気象庁による港内観測データも、あわせて紹介させていただいた。あわせて謝意を表す。

参考文献
岩崎博夫（1996）：デジタルフィルターを用いた津波計，カイジョーチューノ，Vol. 2，No. 4，（株）カイジョーチューノ，pp. 51-58。
岩崎博夫・永井紀彦・清水耕義・安立重昭（2006）：検潮井戸の周波数応答測定システムの開発，海岸工学論文集，第53巻，土木学会，pp. 1416-1420。
小舟浩治・永井紀彦・橋本典明・平石哲也・清水耕義（1996）：1996年イリジャイ地震津波の特性，港研資料，No 842，96p。
清水耕義・永井紀彦・小田・泉・松村・岩崎博夫・藤田孝（2006）：沖合地表面変位記録を用いた津波成分の抽出法に関する研究，土木学会，海岸開発論文集，第22巻，pp. 523-528。
清水耕義・佐々木誠・永井紀彦（2007）：平成18年（2006年）千島列島の地震津波の観測結果，港湾技術研究所資料，No 1162，83p。
東京大学地震研究所（2006）：11月15日千島列島の地震（M8.3），EIC地震学ノート，No. 183，2p。
東京大学地震研究所（2007）：1月13日千島列島の地震（M8.2），EIC地震学ノート，No. 184，2p。
永井紀彦・橋本典明・浅井正（1993）：平成5年北海道沖西津波津波波形記録解析報告，港研報告，第32巻，第4号，pp. 51-97。
永井紀彦・答原一晃・橋本典明・浅井正・東山茂・戸田和彦（1994）：平成5年北海道沖西津波の沖合津波波形，土木学会，海岸工学論文集，第41巻，pp. 221-225。
永井紀彦・橋本典明・平石哲也・清水耕義・市川武・宮部秀一・久高秀信・川長（1995）：現地観測データに基づく平成6年北海道東方沖地震津波の特性，土木学会，海岸工学論文集，第42巻，pp. 351-355。
永井紀彦・答原一晃・清水耕義・高山俊裕・小園みちる（2001）：空中電射型波形計測の開発，土木学会，海岸工学論文集，第48巻，pp. 1426-1430。
永井紀彦・小川英明・額田幸史・久高秀信（2004a）：観測波形記録に基づく平成3年十勝沖地震津波特性，土木学会，海岸工学論文集，第51巻，pp. 276-280。
永井紀彦・小川英明・額田幸史・久高秀信（2004b）：波計ネットワークによる沖合海岸観測システムの構築と運用，土木学会，海岸開発論文集，第20巻，pp. 173-178。
永井紀彦・小見里子・茂・里見（2005）：平成3年東南海地震津波の観測結果，港研資料，No 1096，22p。
永井紀彦・小見里子・茂（2006）：平成3年宮城県沖の地震津波の観測結果，港湾技術研究所資料，No 1119，35p。
橋本典明・永井紀彦・小田知・高橋哲哉・三井正雄・橋本憲雄・鈴木敬夫（1995）：水中超音波のドップラー効果を応用した観測計の開発，海岸工学論文集，第42巻，土木学会，pp. 1081-1085。

観測結果に基づく2006年および2007年千島列島沖の地震津波の特性