（C－5）開水路彎曲部の二次流に関する研究

北海道大学工学部 岸 力
北海道開発局土木試験所 小川 芳昭

I まえがき

開水路彎曲部の流れでは、遠心力のほかにヘリカルな流れすなわち二次流（または周流）の影響があるため、従来行なわれてきたような自由流の仮定は必ずしも適さなく、とくに

広く流れては基しく異なるようである。

本文では、新しい流速分布式を提案し、これによって推定した水面形や境界層内の流れが実験値とよく一致することな

どを述べた。

実験は表－1に示すような水路と水理条件で行なう彎曲流が等流状態になったと思われるθ＝135°における水面形、

流速分布などを測定した。（図－3参照）

II 流速の横断分布

半径rにおける接線方向の流速をvとすれば、

流れが自由流であるときは

(1) \[ v = cr \]

cは定数

が成り立つ。

しかし、図－1からわかりるようにcは定数で

なくrによって変化するようで、広く流れてはEinsteinやHardarの考えがよい一

致をみせる。すなわち、等流状態の彎曲部では

(2) \[ (v/r) \frac{dv}{dr} = cf (r/B) - 1 \]

cfは彎曲部のマツツ係数

Bは水路の巾

この式を積分して

(3) \[ v = K_1 \exp(cf(r/B)) \]

K_1は積分定数

を得る。

また図－2からも、流速分布は

(4) \[ V = Kr^a \]

表－1 実験水路と水理量

<table>
<thead>
<tr>
<th>水路長</th>
<th>m</th>
<th>9.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>前直線部</td>
<td>m</td>
<td>2.0</td>
</tr>
<tr>
<td>后直線部</td>
<td>m</td>
<td>1.1</td>
</tr>
<tr>
<td>曲線部</td>
<td>m</td>
<td>5.9</td>
</tr>
<tr>
<td>水路巾</td>
<td>m</td>
<td>0.5</td>
</tr>
<tr>
<td>曲率半径</td>
<td>m</td>
<td>1.5</td>
</tr>
<tr>
<td>彎曲角度</td>
<td>θ</td>
<td>22.5°</td>
</tr>
<tr>
<td>水路床（固定）</td>
<td>mm</td>
<td>12.0</td>
</tr>
<tr>
<td>流量</td>
<td>l/s</td>
<td>9.6 32.0</td>
</tr>
<tr>
<td>水深（直線部）</td>
<td>cm</td>
<td>5.0 10.0</td>
</tr>
<tr>
<td>測定断面の位置</td>
<td>θ</td>
<td>135°</td>
</tr>
<tr>
<td>水路勾配</td>
<td>1/400</td>
<td></td>
</tr>
</tbody>
</table>

表－2 cfとθの関係

<table>
<thead>
<tr>
<th>θ</th>
<th>cf</th>
<th>5.24</th>
<th>6.25</th>
<th>10.22</th>
</tr>
</thead>
<tbody>
<tr>
<td>135°</td>
<td>c</td>
<td>0.670</td>
<td>0.650</td>
<td>0.570</td>
</tr>
<tr>
<td>n</td>
<td>1.01</td>
<td>0.95</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>実測の</td>
<td>n</td>
<td>1.00</td>
<td>1.06</td>
<td>0.73</td>
</tr>
<tr>
<td>180°</td>
<td>cf</td>
<td>0.731</td>
<td>0.680</td>
<td>0.612</td>
</tr>
<tr>
<td>n</td>
<td>1.15</td>
<td>1.05</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>実測の</td>
<td>n</td>
<td>1.10</td>
<td>1.10</td>
<td>0.73</td>
</tr>
</tbody>
</table>
で近似できそうである。このとき \( n \) は

\[
(5) \quad n = c f \left( \frac{r}{B} \right) - 1
\]

で表わされるから、厳密には \( n \) は \( r \) の関数であるが、水路中心の曲率半径 \( r_c \) の比がそう変化しない範囲では、

\[
(5') \quad n = c f \left( \frac{r_c}{B} \right) - 1
\]

としてよいであろう。

実験によると \( \theta = 135^\circ, 180^\circ \) における \( n \) と \( c f \) の関係は表-2のとおりで、広く浅い流れでは \( n \) はほぼ 1 に等しく、深くなるにつれて減少する傾向があるが、自由渦の場合に相当する \( n = -1 \) にはならない。

III 横断水面形

II-1 練断的現実

図-3は、各断面の平均水深をプロットしたものである。水深は彎曲部に入ると次第に増加し、

\[ \theta = 60^\circ \] で最高となるが、その後やや減少して一定の水深が続け彎曲部端で元の水深に近づく。

これから、次のことがいえよう。

\[
\theta = 0^\circ \sim 60^\circ \] 彎曲による抵抗増加のため水深は次第に増すが、二次流はまだ発達していないので、流れは自由渦の仮定が成り立つ。

\[
\theta = 60^\circ \sim 100^\circ \] 次才に二次流が成長する。

\[
\theta = 100^\circ \sim 150^\circ \] 二次流は充分発達して流れは定常状態となる。

\[
\theta = 150^\circ \sim 225^\circ \] 下流直線部の影響が現われる。

図-4は \( \theta = 60^\circ, 135^\circ \) で測定した水面形と自由渦の仮定によって求めた水面形を比較したものであって、IIおよびII-1での考えが確かたことを見ている。

結局、彎曲部の小さな河川や水路の流れを考えるときは自由渦によってもよいであろうが、彎曲の大きいものについては二次流の影響を考え入れなければならない。

-72-
III－2 水面形の計算

流速分布が、自由渦と異なると同様に速心力だけを考えて求めた水面形も実際とはかなり違っている。

\( \theta = 60^\circ \)のような箇所での流速の横断分布は、自由渦と同じとしてよいから水面形は

(6) \[ g \frac{\partial H}{\partial x} = \frac{r^2}{r} \frac{c^3}{r} c = \sqrt{r \frac{B^2}{r^2} - b^2} / 4 \]

\( \sqrt{r} \)は断面の平均流速

から求められるが、二次流の発達したところでは、外壁に沿って下向きの流れ、内壁に沿って上向きの流れが共存して、半径方向の水面上の変数を減らす働きを持つ。この流れの流速を \( w \) とすれば

(7) \[ w \frac{\partial w}{\partial z} = -w - \frac{1}{\rho} \frac{\partial \rho}{\partial x} \]

であるから、(7)式を積分して \( \rho = H \)と \( x = 0, w = 0 \)という条件を示すことになる

\[ \frac{1}{\rho} \frac{\partial H}{\partial x} = -w \frac{\partial w}{\partial x} - \frac{w^2}{2} \] すなわち

(8) \[ \frac{1}{\rho} \frac{\partial H}{\partial x} = \frac{v^2}{2} + w \frac{\partial w}{\partial x} \]

となり、これが二次流の垂直流を考慮した式である。ここで \( w \) と \( \partial w / \partial x \) は互いに逆の符号をもつのであり、\( w \)の境界層厚を \( \beta \)、二次流の境界層厚を \( \delta \)、\( \delta \)内の流れの要素を求めると

\[ \beta \frac{\partial u}{\partial x} = \beta \frac{u^2}{\beta} \]

さらに、主流の半径方向の流れを \( u \) とおくと

\[ \beta \frac{\partial u}{\partial x} = \beta \frac{u^2}{\beta} \]

であり、流れは等流であるから

\[ g \cdot s = u \frac{\partial (v \cdot r)}{\partial x} \] すなわち

\[ u = \frac{g \cdot s}{\partial (v \cdot r) / \partial x} \]

であり、前述のように \( \nu = \frac{g}{r} \)、\( n = 1 \)としてよいから

\[ \nu = \frac{g}{r} \]

\( \beta \frac{\partial u}{\partial x} = \beta \frac{u^2}{\beta} \]

\( s \)は河床勾配

\[ \nu = \frac{g}{r} \]

\[ \beta \frac{\partial u}{\partial x} = \beta \frac{u^2}{\beta} \]
故に水面形は平均値を用いると(8)のようになる。

\[ 0 \theta \frac{\partial H}{\partial r} = K r^2 - \alpha \frac{\sigma_s}{4} \frac{\alpha^2 \sigma_s^2}{K^2} \left( \frac{r}{\sigma} \right)^3 \frac{1}{h} \]

また近似的に平均水深が水路の中央に生ずる
と仮定すると次式で求められる

\[ 0 \theta' h = \frac{K^2}{2} \frac{(r^2 - r_e^2)}{g} - \frac{\alpha^2 \sigma_s^2}{4} \left( \frac{r}{\sigma} \right)^3 \frac{1}{h} \left( r - r_e \right) \]

図−5、6は(8)を仮定した水面形と実測を比較したものでよい一致をみせている。

N 弧曲部の境界層

流速の横断分布が\( v_m = K r \)で表わされ

境界層内では図−7のように半径方向にu

接線方向\( \theta \)にかかる流速があたって、それぞれ

の流れの逆方向に\( r \), \( \theta \)なるマッサ力が

働いていると考えると運動の式は

\[ 0 \theta u \frac{\partial u}{\partial r} + \frac{v}{r} \frac{\partial u}{\partial \theta} - \frac{v^2}{r} = R - \frac{1}{\rho} \frac{\partial P}{\partial r} \]

\[ 0 \theta u \frac{\partial v}{\partial r} + \frac{v}{r} \frac{\partial v}{\partial \theta} + \frac{u}{r} v = \theta - \frac{1}{\rho} \frac{1}{r} \frac{\partial P}{\partial \theta} \]

連続の式は

\[ 0 \theta \frac{\partial (u \cdot r)}{\partial r} + \frac{\partial v}{\partial \theta} = 0 \]

09003から運動量の式を導くと次のような基本式をうる。

\[ 0 \frac{d}{dr} \int_0^r u^2 r dr - \int_0^r v^2 dz = \frac{r}{\rho} - r - \frac{r_m}{\delta} \]

\[ 0 \frac{d}{dr} \left( r^2 \int_0^\delta u v dr - r_m \frac{d}{dr} \left( r \int_0^\delta u dz \right) \right) = \frac{r}{\rho} - r - \frac{r_m}{\delta} \frac{r_m}{\delta} \]

境界層内の流速分布がブラシウス（Blasius）の1/7

乗数則にしたがうものとすれば

(20) \( v = v_m (z/\delta)^{3/4} \)

(21) \( u = u_0 (z/\delta)^{3/4} (1 - z/\delta) \)

(22) \( r_x = 0.0225 \rho \left( \frac{v_m}{\delta} \right)^{3/4} v_m^{3/4} u_0 \)

(23) \( r_\theta = 0.0225 \rho \left( \frac{v_m}{\delta} \right)^{3/4} v_m^{3/4} \)
\[
\begin{aligned}
\left\{ \begin{array}{l}
\frac{\partial}{\partial \theta} \left( v \frac{r}{m} \right) \left|_{m=0} \right. = g S \\
\frac{\partial}{\partial \theta} \left( v \frac{r}{m} \right) \left|_{m=0} \right. = g S = \frac{U}{r} \frac{\partial (v \frac{r}{m})}{\partial r}
\end{array} \right.
\end{aligned}
\]

また
\[
U = \frac{d}{r} \int_0^r v^2 \, dz = 0.4083 \delta u_0 \quad \text{であるから}
\]

\[
g \cdot S = \frac{A'}{r} u_0 \frac{\partial (v \frac{r}{m})}{\partial r} \quad \text{を導く。}
\]

\[
0.2071 \frac{\partial (u_0^2 \delta r)}{\partial r} + 0.2222 \frac{v_0^2 \delta}{r} = 0.0225 \left( \frac{v}{\delta} \right)^{1/4} \frac{v_0}{r}
\]

\[
0.3403 \frac{\partial (u_0^2 \delta^2 r^2)}{\partial r} - 0.4083 \frac{\partial (u_0^2 \delta r)}{\partial r} = 0.0225 \left( \frac{v}{\delta} \right)^{1/4} \frac{v_0}{r}
\]

\[
- \frac{A'}{r} u_0 \frac{\partial (v \frac{r}{m})}{\partial r}
\]

\[
\frac{v_0}{m} = \frac{K}{r} \frac{u_0}{m} \delta = \phi, \quad \delta \frac{d}{d} = d \quad \text{を入れると}
\]

\[
0.2071 \left( \phi^2 d + 4 r \phi d \frac{d}{d} + 2 r \phi^2 d' + 2 r \phi^2 d' \frac{d}{d} + 0.0225 \left( \frac{v}{\delta} \right)^{1/4} \frac{v_0}{r}
\]

\[
\phi^2 d - 4 \phi d' + 2 \phi^2 d + 1.075 \phi^2 \phi d = 0.1086 \frac{v}{\delta} \frac{v_0}{r}
\]

さらに
\[
x = 1 - r \frac{d}{d} \quad \text{（dは外壁の曲率半径）} \quad \text{において変数を} \quad \text{xに変え、} \quad \lambda = \frac{A'}{d} \quad \text{とすると}
\]

\[
\phi^2 d + \frac{4 \phi d}{d} - 2 (1-x) \phi d + 1.075 \phi^2 b \phi (1-x)^2 a = 0.1086 \frac{v}{\delta} \frac{v_0}{r}
\]

\[
\frac{(n+0.8) \phi d + 0.2000 (1-x) \phi d}{d + A (n+1) \phi d}
\]

\[
= 0.0662 \frac{1}{r} \frac{v}{\delta} \frac{v_0}{r}
\]

\[
\phi = x P \left( \frac{c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots}{x^2 + \cdots} \right)
\]

\[
d = x \phi \left( d_0 - d_1 x + d_2 x^2 + d_3 x^3 + \cdots \right)
\]

\[
\text{とおくと} \quad \text{式中のべきが等しいという条件から}(\ref{eq:8}) \quad p = \frac{9}{10}, \quad q = \frac{1}{10}
\]

\[
\text{である} \quad \text{得る} \quad \text{ことで} \quad n = 1 \quad \text{として}(\ref{eq:9}) \quad \text{を} \quad (\ref{eq:8}) \quad \text{に代入して、未定係数法により係数を二次の項まで求める。}
\]

\[
\phi = x \left( \frac{0.4287 - 0.9937 (188.85 + 2A) x + (48.53 + 12.112 A + 7.4292 A^2) x^2 + \cdots}{2} \right)
\]

\[
d = x \left( \frac{0.8568 - 0.5686 (189.85 + 2A) x + (0.8440 + 5.0342 A + 2.2733 A^2) x^2 + \cdots}{2} \right)
\]

\[\text{図8 境界層の厚さ} \quad n=1\]
また (28) 式の ( ) を代々 \( \phi(A), D(A) \) とおくと

(37) \[ \delta = \left( \frac{1}{K} \right)^{\frac{1}{2}} b^{\frac{1}{2}} \frac{2}{a} \phi(A) \]

(38) \[ u_0 = K b \times \frac{\phi A}{D(A)} \]

(39) \[ \tau_\theta = 0.022 5 \rho \frac{a}{b} \frac{2}{a} (1-x)^2 \phi(A) D(A)^{\frac{1}{2}} \]

(40) \[ \tau_r = 0.022 5 \rho \frac{a}{b} \frac{2}{a} (1-x)^2 \phi(A) D(A)^{\frac{1}{2}} \]

(41) \[ u_* = \sqrt{\frac{\tau_r}{\rho}} \quad \frac{1}{2} \]

が得られる。

図-8,9,10 は (27) (38) (41) の計算結果である。
図-11,12 は垂直流速分布および境界層の厚さを実測と比較したもので、いずれもよく適合している。

\( \nu \) もすす

以上の考察から次のことがいえよう。

1 等流状態の壁曲線の横断流速分布は、自由面の仮定にしたがわず、\( \nu = K_1 \exp (r/B) \) とおき、\( \nu = K_1 \nu \) としたが、またこれらの間には \( n = 0.5 (r/B)^{-1} \) なる関係があり、本実験での実測值と良い一致を見出した。

2 二次流の影響を無にして底面の境界層厚 \( \delta \) と側壁の境界層厚 \( \beta \) の比を考慮することにより横断水面形の計算式を導出し、実測と良い一致を見せた。

本実験では \( \beta/\alpha = 2 \sim 3 \) であった。

3 境界層については、

厚さ \( \delta \) は外壁より川内側の 5 \( \sim 10 \% \) までは急激にいますが、その後やや減少し、20 \% 以上では殆ど変化しない。

\( u_0 = K b \) に従って増加する。これは、内側ほど流れの振れが大きいかことを示している。

すなわち速度は、川内側の 5 \( \sim 10 \% \) までは大きく、20 \% 以上では減少する。

4 \( \delta, u_0, \nu, u_*, \) などの計算にあたって、水面勾配の項の係数 \( A \) の影響は大きく、その値の推定は重要である。本実験では \( A = 0.4 \) であった。

また図-8 ～ 11 は \( A = 0 \) の場合を除き \( x = 2 \) の以下の項までの計算結果であるため \( x < 0.2 \) の範囲では比較的よい近似を示すが、\( x \) の大きな部分を明らかにするためにはより高次の項の係数まで求めねばならない。

\(-76-\)