実験研究

風波の制御に関する実験的研究

Experimemtal Study on Reducing Effect of Planting Trees on Wind-Waves

Yoshio Muraki, Masahiro Ohira, Tsuneharu Hatakeyama, Hiroshi Saeki

実験は風水トンネルで行なった。この紙において、風波は風後に新たに発生する波のことを指し、風速分布と波高分布は観測された。化学洗浄装置のブラシを植栽モデルとして使用した。風力が制御するための有効な配置を提案した。

1. まえがき

ここでいう風波は、樹木の風下水面に新たに風により発生する波のことである。近年、海岸、内陸いずれにおいても、ウオーター・フロント開発が進む傾向にある。また、人工島の造成も進むことになる。そこで、風波の制御に関する研究は非常に重要であると考えられる。この研究は風波制御に最も効果的な樹木の植栽を工夫することを目的としている。筆者らがこれまでに、防風樹による風波の制御に関し研究【4〜11】をすすめてきたが、この研究はこれらの研究をさらに進めている。実験そのものの模型は、製作も必要であり、高さが異なる大きさのものを数多く入手することが難しいため、この実験では、樹木を満たすような水深があり、かつ、寸法、材質とも対象化される波高数多く容易に入手できるものとして洗浄ブラシに着目し、これを利用することにした。最適配置数、樹木下枝カット（視界、通路確保）の影響、その補足対策、明配列ととど配列との比較、柵と樹木との特性相違等について考察を行い、定性的ではあるが、基礎的諸点を明らかにすることことができたと考える。風の制御については種々の研究例【2]、3]があるが、本論のような波の制御に関する研究は見当たらないようなのでここに報告する。

2. 実験方法

実験に使用した水路は、図-1に示すように、幅0.6m、高さ1m、長さ24mの両面ガラス張りの風洞水路である。樹木前方の風速を、ほぼ平均の位置で、デジタル式風速計を用い測定し、風速計（風速）の風速とした。樹木背後の風速、風向、波高を風洞内の移動測定台に取り付けたデジタル式風速計、風向流速、容量式波高計を用い測定した。風速、風速測定位置は水面上5cmである。測定データは1/10最大平均波高で整理した。

実験に供した樹木の配置、まえがきで述べたように、洗浄ブラシである。樹木は一般に種々の種類があり、

* 正会員 工博 北海道工業大学教授 工学部土木工学科 （〒006 札幌市手稲区前田7条15丁目）
** 北海道農業土木技術指導協同組合
*** 北海道工業大学大学院
**** 正会員 工博 北海道大学教授 工学部土木工学科
同じ種類でも、枝、葉の種類、大小、量等非常に複雑である。枝、葉は風によりたわみ、風の強さにより風の通り易さが変わる。この点に大きく注目すると、風乱フラシは樹木と共通するところ大きく、かなりの程度樹木の模型としてその役割を果たしてくれるものと考える。定性的特性はかなり明らかにされ、また、樹木配列等の効果に対しても適切な答えを与えてくれるものと考える。

模型ブラシの種類は、直径 φ = 90mm、高さ Z = 100mm、投影面積率約10%、馬毛のものを主体とし、これとの比較用として φ = 35mm Z = 100mm、φ = 40mm Z = 80mm、φ = 20mm Z = 40mmの3種、副林（図-2）用として φ = 25mm Z = 60mm、φ = 25mm Z = 30mmの2種、列数増効果限界実験用として φ = 45mm Z = 100mmの1種、合計7種である。樹木間隔で、密着、45mm、90mmの3種。配列は図-2に示す密着配列とちどり配列の2種で、配列数は5〜5列、特定のものについては11列である。樹木枝タイプの高さは、40mm（現地高で2m、視界通路通行時間確保構成）、25mm（現地高1、25m、視界時視界確保、カットの影響を詳しくみるため）の2種、副林配置は樹木の風上側と風下側の2種である。これらを種々組合わせて実験を行った。模型縮尺は1/50と仮定した。

実験風速は7m/s、9m/sの6種類である。風洞の性能と調節に足る精度の大きさの波を与えられる風速という立場から、上記の風速とした。この種実験について厳密な相似則を得ることはむずかしい。この実験の場合、乱れの構造が似ているように相似則が第一義的には望ましいと考え、根本（1963）の提案した風相似則に従うことにした。風速をU、長さをL、模型をL、実物をPで表すとU = Lm/Lp = (Un/Ln)がその式である。これを本実験にあてはめるとき、U = 25m/s、33m/sとなる。実際風速に比し過大となるが、定性的特性、効果比較の考察には許容されるものと考える。

3. 実験結果と考察

樹木背後の風速分布、波高分布を無次元表示し、すなわち、縦軸に（樹木があるときの風速）/（樹木がないときの風速）、（樹木があるときの波高）/（樹木がないときの波高）を、横軸に（樹木からの距離）（樹木高）をとり図示し、樹木の風速、波高に対する制御効果、制御特性など比較考察した。

図中に示す到る記号は次のようなものである。

X : 樹木（水際線）からの距離
Z : 樹木高
U : 樹木背後の風速
U0 : 与風速
U(Z=0) : 樹木がない時の風速
H : 樹木背後の波高
H(Z=0) : 樹木がない時の波高

(1) 樹木の場合と植の場合の特性比較

(a) 風波水平分布の比較

図-3に、風速と波高的測定結果の例を示した。この図から、樹木の場合も、筆者等（1990, 1992）がさきに報告したスリット型防風欄、ネット型防風欄を同様、樹木背後の波高の水平分布は無発達領域と成長領域を示し、

かに区分され、無発達領域の範囲は樹木高のおよそ22倍で、スリット型、ネット型のそれぞれほぼ同じ値であることがわかかる。また風の分布は、これら、両植の場合と同様のパターンを示していることが知られる。図-4は図-3を無次元表示したもので、風速、波高の半減距離が示されている。
空隙率の比較

観の場合はその空隙率は常に一定である。しかし、樹木の場合
は、枝葉がたわみ動くため、空隙率は風の強さによって変化
することが当然予想される。観の場合は（風速）/（観
無し時の風速）の無次元で表示した場合、観前の風速水平分
布は、7m/sの場合と9m/sの場合と殆ど同一分布曲線になること
を筆者等（1990）は既に報告した。観前の風速垂直分
布も同様であることを筆者等（1992）は報告した。樹
木の場合についてこれを見てみると、例えば図-5に見るよ
に、風速9m/sの場合は風速7m/sの場合よりかなり大きいことが
知られる。このことは、風速が大になることにより空隙率が大
になったことを示しているものと判断される。このことは樹木
の場合の大きな特徴と言えよう。そしてこのことは、波の大き
さを一般に大きくするので重要である。しかしその変化を量的
に把握することは難しい。

(2) 樹木下枝カットの影響

一般に樹木はその下部が幹だけになっている場合が多い。これは育成・育の後もあろうかと思うが、遊歩
空間、休息空間、景観展望空間等の確保のためになされているものとも思われる。波制御の立場からみると、下
枝カットは制御効果を減少させ好ましくないものと思われる。この様子を実験でみてみた。評価は波高半減距離、
風速半減距離の大小で行った。半減距離は、図-4に示したように、風速、波高それぞれが、樹木がない時の風
速、波高に対して50%以下であるような範囲を樹木（水際線）からの距離（無次元）で表したものである。当然
この値が大きい程効果が大きいことになる。図-6に下枝カットなし、下枝カット25mm（全高の1/4）、40mm
（現地2m）の場合の波高半減距離の値を示した。樹木下枝カット無しの場合、ちどり1列（90mm間隔）の時は、
半減距離はないが、密着型の時は41を示し、ちど
り型の場合でも2列の時は44、3列のときは43、4
列のときは32の半減距離を示し、ちどり1列以
外は、大きな波高制御効果を示している。カット
25mmの場合は、密着型でも半減距離はなく、ちど
り3列で始めて半減距離34が見られ、カット40mm
の場合は、ちどり4列で始めて、小さいが半減距
離16を示している。このことから、下枝カットの
波制御効果への影響はかなり大きいことが分
かる。

図-5 風速の大小による樹木の空隙率の変化

図-4 波高半減距離

図-6 樹木下枝カットの影響（風速 9m/s）
（3）副林設置の効果

樹木下枝カットによる波高増大の影響を除く方法として副林の設置を試みた。図-7は下枝カット40mm（現地2m）とこれより高い高さごとに割り当てた場合（風下側の水面に対する視界良好）の副林の効果をもたらしたものである。副林がない場合は、密着型及びちどり型3列まで半減距離が無しであるのに対して、副林を設けた場合、明らかにちどりの場合も半減距離が生じ、副林の効果の大きいことがわかる。副林+密着型で3列、副林+ちどり2列型の場合3列で飽和の状態、ちどり3列、4列と増しても殆ど効果の増は認められない。副林を設けない場合で、ちどり4列で半減距離は現れ、このことから、列数をある程度以上増やせば副林がなくてもそれ相当の効果が得られることは予想される。図-8は、下枝カット40mmとし、これにこれより高い高さ30mmの副林を風下側に設けた場合の例である。この場合、目の高さの狭い範囲ではあるが視界が得られる。副林+ちどり型2列で、波高半減距離35が得られ、ちどり3列、4列も殆ど変わらない値が得られ、副林の無い場合の値と比較するとき、副林の効果の大きいことが知られる。

図-7 副林の効果（風上設置、風速9m/s）
図-8 副林の効果（風下設置、風速9m/s）
図-9 副林の風上設置と風下設置の効果比較

（4）副林の風上側配置と風下側配置の効果比較

前後左右の視界を最小限確保し、かつ、樹木下枝カットによる波高制御効果減少を最大限抑制する立場から、樹木下枝カット40mm（現地2m）、副林高さ30mm（現地1.5m）の密着型樹木配置について、風上配置と風下配置の効果の比較をみたのが図-9である。なおこの図には、副林を全く設けない場合も示してある。またこの図では、副林と本林の間の空間を種々変えてその影響を調べた。この空間は、遊歩空間として利用性が高いので、広いほどよいと思われる。結果は、副林を設けない場合は、波高半減距離は見られないのに対し、本林と副林を組み合わせた場合は半減距離を生じている。風上、風下いずれの配置の場合も、本林と副林の間が最も狭い時（模型寸法120mm）最大を示し、さらに、副林を本林の風下側に設置する方が風上側に設置するより大きな半減距離を示し、制御効果の大きいことを示している。副林を設けない場合、距離480mmと大きく離した場合に半減距離が現れているが、これは、風下側にある程度の陸地部分があるとその摩擦
で風が弱まるためかと思われる。防波堤上に防風柵を
設けた場合も同様のことが見られた。またこのことには、
下枝カット25mmの場合（図-10）も見られた。図-10は、
副林高さが60mmで、これはカット寸法より大きい
場合であるが、図から分かるようにやはり本林の風下
側に副林を設けた方が波高制御効果が大きいことが知
られる。

（5）樹木配列数増による波高制御効果の変化
図-11は、φ=90mm、Z=100mmの模型についての実験
結果であるが、与風速9m/sにおいては、ちどり型配列
3列で半減距離最大を示し、4列になるとかえって小さ
くなる傾向を示している。与風速7m/sにおいては、ち
どり型配列2列で半減距離は最大を示し、それ以外配
列数が増えると減少の傾向を示している。いずれにし
ても列数がある程度以上多くなると、効果が減少する
傾向が見られる。これの理由は、樹木の全体的空隙率
が小さくなり、このため壁効果（海岸工学1990,1992）
的状態が生じたためと思われる。風速7m/sの場合より
9m/sの場合の方が列数が多いときに最大となっている
のは、風速が大きくなると空隙率が大きくなるためと
思われる。図-12は、φ=35mm、Z=100mmについての実
験であるが、密着型では3列で半減距離があり大きな
効果を示しているが、2列では波高半減距離はなく、
効果は大きく減少し、また、ちどり配列については、
2列（密着1列と同数）のとき最大を示し、4列（密着
2列と同数）では減少し、両者同じ傾向を示している。
風速7m/s、9m/sいずれも同じ傾向を示している。さらに、
図-13は、φ=80mmとZ=40mmの模型についての密着型配列
で与風速9m/sの場合の実験結果であるが、両者とも1列では半減距離があったものが3列、5列では半減距離がなく
なり、列数が多すぎてもよくないことが知られる。いまの場合、樹木高、樹木径、列間隔ともに、モデル間の比
を2にとるスケールエフェクトをも一応考慮に入れてみたものであるが、両者間には大差なく同じ傾向を示している
といえる。次に樹木の配列数を特に多くした場合の実験結果を示す。図-14はφ=45mm、Z=100mm、下枝カット0.25、
40mmのブリキモデルを0〜11列配置した場合の結果である。この図から、下枝カットした場合でも列数をある程度
以上多くすれば（この実験ではカット40mmのときに7〜8列）、かなり大きな制御効果が得られることが分かる。
副林の必要性がなくなる可能性が十分考えられる。

図-11 樹木配列数増による波高制御効果の変化
図-12 密着配列とちどり配列の比較

-47-
4．あとがき

スリット型・ネット型両防風欄に引き続いて今回樹木にみたてたブラシ模型について実験を行い、樹木の場合に予想される風波制御効果に関するいくつかの基本的性質を考察した。検との違い、下枝カットの影響、幹の効果等が明らかにすることがでてきたと考える。今後は、幹だけの効果、風の垂直分布、乱れ等を調べ、制御のメカニズムを明らかにしたいと考えている。

参考文献
1) 根本茂：自然風を対象とした風洞模型実験の相似則，航空学会誌，第11巻，第116号，pp.272～278，1963．
2) 鳥木太一：防風網に関する研究(4) 風洞実験による種々の防風網付近の風速分布特性，農業気象，38(2)，pp.123～133，1982．
3) 武田勝昭・安田喜世史・竹内政夫・金田安弘：防風柵・防雪柵の性能に関する風洞実験，日本風工学会誌，第25号，pp.15～32，1965．
4) 村木義男・竹内政夫・佐伯浩：防風柵による小水域波浪の制御に関する実験的研究，海洋開発論文集，Vol.5，pp.297～302，1988．
5) 村木義男・竹内政夫・佐伯浩：ドーム型防風構造物の小水域の風と風波におよぶ制御効果に関する実験的研究，海洋開発論文集，Vol.6，pp.149～154，1990．
6) 村木義男・竹内政夫・佐伯浩：樺型防風構造物の風と風波の制御に関する実験的研究，海岸工学論文集，第37巻，pp.564～568，1990．
7) 村木義男・竹内政夫・佐伯浩：多溝防風柵による風と風波の制御に関する実験的研究，海洋開発論文集，Vol.7，pp.107～112，1991．
8) 村木義男・大平正浩・竹内政夫・佐伯浩：在来防波堤の風・風波制御効果に関する実験的研究，海洋開発論文集，Vol.8，pp.289～294，1992．
9) 村木義男・大平正浩・竹内政夫・佐伯浩：スリット型防風柵の風波制御効果の予測に関する考察，海洋開発論文集，Vol.8，pp.307～312，1992．
10) 村木義男・大平正浩・竹内政夫・佐伯浩：ネット型防風柵による風と風波の制御に関する実験的研究，海岸工学論文集，第39巻，pp.516～520，1992．
11) 村木義男・大平正浩・晶山典明・佐伯浩：防風構造物に付加した防波堤の風・風波制御効果に関する実験的研究，海洋開発論文集，Vol.9，pp.241～246，1993．